
Systems Reference Library

File No. 1401 -25
Form C24-1455-2

Fortran Specifications and Operating Procedures
IBM 1401
PROCl\AM NUMBER 1401-Fo-050, VERSION 3

This rcferern.:c publication contains the language spec­
ifications necessary to code a 1401 Fortran source pro­
gram and the procedures for assembling and running
the object program. In addition to describing the 1401
Fortran language, the specifica tions section also con­
tains descriptions of:

l. the control card
2. the phases of the compiler
3. the arithmetic and input/output routines generated

by the compiler
4. the 1401 Fortran facility for linking programs or

segments for cx>ntinuous processing and
5. the input/output routine option provided in 1401

Fortran.

In addition to the procedures for assembling and
running the object program, the operating procedures
section also includes explanations of:

l. compiler output

2. compiler diagnostics
3. objc•ct-prograrn storage allocation and

4. objt>ct-program halts.

The reader should be familiar with the Fortr~
General Information Manual, Fonn F28-8074, and the
IBM 1401 configurations required for the assembly and
the execution of the object program. Additional pub­
lications concerning the IBM 1401 system can be found
in the IBM 1401-1460 Bibliography, Form A24-1495.

This is a reprint of an earlier edition, and incorporates the following

Technical Newsletter:

Form No.

N21- 0046- 0 15, 20, 22, 28, 29,

33, 40, and 42
4/ 27/ 65

Copies of this and other !RM publications can be obtained throug-h IBM Branch Offices.
A fornl is jnduded at the back of this rnanual fur rci:l<lt:rs' comments. If this foriTI ha~
been removed, address comments to: IBM Corporation, Pr<>duct Public:alions, Dept. 245,
Rochester, Minn. 55901.

© International Business Machines Corporation 1964

Contents

Fortran Specifications - IBM 1401 5

Machine Requirements
Source Program Char:iclcrs
Writing the Source Program
l'unc:hing a Source Program

Constants, Variables, Subscripts, Functions,

5
6

6
7

and Expressions 7

Arithmetic Precision 7
Constants 7

Variables 8

Subscripts
Functions
Arithmetic Ex1)rcssions

1401 Fortran Statements

8
9

10

ll

Arithmetic Statement 11
Control Statements 12

Input/ Output Statements 14

Specification St.itcmcnts ..

Input/ Output Option

Program Linkage
Linkage Statement
Title Cards
The Monitor Progrnm

The Processor Program

21

22

22

23
24
25

26

Control Carel 26
Logical Flow of thc Processor 26
Arithmetic Opcratiom 30
lnp11t/ Output Opcrntions 35

Performance Data 36

Fortran Operating Procedures - IBM 1401 38

Com1)ilin1: Operation Procedures 38
Object Program Op,·rntion Procedures 42

Running Programs Containing Linkage Hou tine 43
Sample Programs 43

Index 61

Fortran Specifications· - IBM 1401

Machine Requirements Tlie WM 1401 Fortrnn is a symbolic programming sys­
tem composed of (1) a language and (2) a processor
program (compiler). Symbolic: or source statements are
coded using the 1401 Fortran language, which closely
resembles the language of mathematics. The source
711·ogrnm is a particular scquenc<' of source statements.
After heing coded on the Fortran Coding Form, Form
XZS-7327 (F igure 1), the source statements are punched
into cards, which arc then used as input to the 1401
Fortran compiler. The compiler translates the source
program to a 1401 machine-language program (ob;cct
program.) that can be executed -immediately or punched
into cards for future use.

The minimum machine requirements for the compila­
tion of a 1401 Fortran source program are as follows:

8,000 positions of core storage
Advanced Programming Feature
High-Low-Equal Compare Feature
Multiply-Divide Feature
One IBM 1402 Card Read-Punch
One n:i::vi: 1403 Printer, Model l or 2

One magnetic tape unit, the IBM 729 or the IBM 7330,
may be used to store and load the 1401 Fortran com-

IBJ'1 FORTRAN COOIN G FORM

lo,,.. J1?1· 7J27
,nM•II ;,. \J. s,

Progra m ----- ---·-· --- Dote _____ _
Coded Sy - - - - - ---- --­
Chocked Sy Identification

L....__._L, ___._J
n •o

Pogo _ ____ of __ _

r=- C fO II C~,_.M,Nf

J.$1AU;MENT C:
N1JMeU s1 FORTRAN STATEMEN T

, __ so , ,o _1~ ... --- ,o~ - -=="~-='°'=---~-,.;.;"--=•..,'--=•"-•~=="'=- " ..
~ - -· · J .. , ___ l __ ...1............ I ,_.__ ___ I . - -l , ··- J . . • --l---- . l ~ I~ . ---J. - _ _J . -

0----<1-1-- ·--1-.-- 1 ··----1--•, I -~--~--~ __ _,_ ____ ..1-- .. ~-.1.-.. J ---'-- · · - ' · ' -

+-+----'-•--. 1..- ---'- - - --'----'--- _ _ ...L_.......... _I • . • • _.___ .---1-. -__L_.,__ _, J...--_L.--• ..L.....

t,...____ ..-.J..-.., , . I. , ~.L.~., L--.,.- .L_ .. • ----------1.-..._.,..-l-.,.~--- I, l , . - . L--- • -

•• ------'----~--L......._..__ _ I . . , 1,_1...... ... -........1.. .. _ _ _ .MJ.-- , _ ___J____~.....J . • • --L-..-.. . ' ----'-----'-

J., , I _._____..__,. J _ _ _. •• ,,.l__,_ ~-L. , .. - - 0. - - •-1·- .. ~_ __ , __ L __,__~ -• .I ·•- - ---'-~ --'-

..._,.L.. _.., I . . -...1--.. ,. J. , ..._._~ •. • -'-·• - • L.............., - ---L ,. •-• I .,, . . . , . J.._.........,._ 1_' ,_.,,_._... ~ ,

. I . .. ___ l.. .,._ _l.......,._._ - .J.... .. , . , _ '-~~. , _, __ .. .J · · -·- ·--'-"' .. , L....L.......... _ , I ·•-· i, ____ ..._ .. l -- , 1 . ,

...!.,__._ J _.,., . ,. I •• _ ~-I , , ,._,...J_., , .___. _ _ ...J._, . ..-~ -'---.. , . l - ,-~- I

1-----,1-l--· .__J__,._.....____.____l___._,, • • ; ._ __ ..,_ _ _ _.__ __ J •• • • _,__ _ __. __ __,__ __ . -.l - --· - •--~ .

1--~-4-+---1. , l -- · - ,.L.I -- . . .L • • --· l · -•-· .-.C--..-1 . . , - ~ -'--- 1 . . ---. . . -1. ,,,,. _ ___ ._ _ __ ... ~l.. ,

t-----1-l-- ,.._1._ _ -----L.......... ,., ••-'-- . ·'----------"'--· • • '-----'----~- - . ,L-, .,_! _ l _ __ ., .._J •- -'-

I . -..a.....--.. J __ ...,___ _ _,_ __ ..,_ ___.L__.._,. . ..L--- ..J - .. • -.l- ---L~- --1--...............

1-----t--'---......L~ , _ J.-__._.,. , l ---------L · -- l , -~-!. . _.,_1__ _ _ , , I • . , _ _._., ..l--.... _, . L---------l ~-1.----'

1-- ----t-l--- . . J , . ,._---J._ . . _ _. .l-., • .---l. _ __ ., , L....,.__...__._ ., •----'--- -~~ . J . _ __1_ _ _,_ __ _._ ----'--

---.......l,_. ._j_, ___ J__ . , 1,_ .. __ 1 _ ... _ _. ___ ~ L..- • . . - 1.- ---l- - -- - '-------- ----L---

'1..... ~ . .. ,_,_ _1._.. _ • - ·- ·--• ~ . -1--.1 - --........J .. . -'---l ---1 .. __ _._ , ... L~ __,__ ...

1--- ----f-l --L.- - J- L-.........__..---1........... • • --L . .. · - · --· ·· ~ ., . J ______ , ~, _i_.._.._... .. --1-.. ---... 1_..... __ .,_1..-_ _ .L..-I

•. .-----&.. . •-1....-....... , " • .l~- · __J-.,._.._....__.j_ __ --J ,_, l . __ J_ , • --• 1. - ~ - J __ . 1--.. -.l- ,.,

'-----'--'----1....-----1.-,, .. I • •--L--~ --' -~-- ·- • • -~--~ --__.__, • , --'---. __ ..__ __ .J-_.,, ,

Fi~urc l. Fortran Coding Form

5

pilcr. The Sense Switches feature may be used to pro­
vide a 1403 listing of the object program during vari­
ous stages of compilation.

The minimum machine requirements for execution
of the compiled object program arc as follows:

8,000 positions of core storage
Advanced Programming Feature
High-Low-Equal Compare Feature
Multiply-Divide Feature

One IBM 1402 Card Read-Punch

One rn::-.1 1403 Printer, Model 1 or 2

Source Program Characters

The following chart indicates the
I

list of characters
which may be used in a Fortran source program:

Card Card
Character Code Character Code

l3lank M 11-4
J 2-3-8 I\ 11-5
12-4-8 0 11-6

+ 12 p 11-7
$ 11-3-8 Q 11-8

* 11-4-8 R 11-9
ll s 0-2

I 0-1 T 0-3
0-3-8 u 0-4
0-4-8 V 0-5

= 3-8 w 0-6
A 12-1 X 0-7
ll 12-2 y 0-8
C 12-3 z 0-9
D 12-4 0 0
E 12-5 l
F 12-6 2 2
G 12-7 3 3
1-1 12-8 4 4
I 12-9 5 5
J 11-1 6 6
K 11-2 7 7
L ll-3 8 8

9 9

No other card codes are acceptable in 1401 Fortran
source program statement cards, with the following
exceptions:

4-8
11-3-8,

will be taken to mean - (minus).

which normally has meaning $ only when it
appears as H-conversion text in a FORMAT

statement, will be taken to mean * when it ap­
pears elsewhere. In this event a message will
be printed in the source program listing in
tho same line as the statement.

6 Fortran: 1401 Specs. and Op. Proc.

0-2-8 (prints as record mark) will be tolerated, but
no characters following it in the statement
will be processed even if it is merely a member
of an H -conversion format specification.

Writing the Source Progam

Each Fortran statement begins a new line of the cod­
ing form. (Two statements may not appear on the
same line.) Statements that are too long to fit on one
line, however, may be continued on subsequent lines.

Statements and information are arranged on the
coding sheet as follows (comments and continuation
lines are handled separately) :

1. Columns 1-5 of the first line of a statement may
contain a statement number, which can be refer­
enced by another Fortran statement. Statement
numbers arc unsigned and may range from 1 to
99999. Leading and trailing blanks and lead ing
zeros in statement numbers are ignored by the
1401 Fortran processor. If no statement number is
needed, columns 1-5 may be left blank.

2. Column 6 of the first line of a statement may be
either blank or punched with a zero as the user
wishes. See Continuation Lines.

3. Columns 7-72 contain the Fortran statements. A
statement cannot consist of more than 660 charac•
ters (i.e., 10 lines - sec Continuation Lines). The
Fortran processor ignores blank characters except
in the case of II-conversion (see fl-Conversion).
Blanks can be used freely to improve the readabil­
ity of the source program.

4. Columns 73-80 are not processed. They can be used
to punch card numbers or other identifying infor­
mation.

Continuation Lines

When a Fortran statement is too long to fit on one line
of the coding sheet, it may be continued on the next
line or lines. A statement may take up to nine con­
tinuation lines, or a total of ten lines (660 characters).

A c'<>ntinuation line is coded as follows:

1. Columns 1-5 are blank.

2. Column 6 contains any character other than zero or
blank.

3. Columns 7-72 contain the continuation of the
Fortran statement. Column 7 can be considered as
following column 72 of the preceding line.

4. Columns 73-78 are used for identification. The
processor does not process these columns.

c~o:e,lfl I
SU1(1t[ltT FORTRAN STATEMENT IDEIOIFICAllON

~UNeEI'~

010 0 0 0 ooooocoooooooo noooooooooooaooooooooooooooooooooooooooooooooooooooo 000 0 0000
1ii l • I 719 101112 131415~ 11~ 1! ~21U nN~nnn~~)l » ~ ~~~n~D~ •IUU~~~oq~~Sl~53~~~5l~U~l16Z~~~Y61~U~1ln 111, 1111 n 1nu,
111 1 1 I I 1 I I I I 1 I 1 I I 1 I I 1 I 1 I I I I 1 I I 1 1 I 1 1 1 I 1 I 1 I I I 1 I I l 1 I I I I I I I I I I 1 I 1 I I 1 1 I 1 1 I 1 1 1 1 1 1 1 1 I 1 1

I

212 2 2 2 22222227.2 2 222227.2222222222222222222 2 2222222222222222222222222222222 22222222

3/ 3 3 3 3 3 3 3 3 3 3 3 :1 3 3 3 3 3 3 3 :1 33333333

4:4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 <I 44 4 4 44 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 44 44 4 4 44444444

515 5 5 5 55555 5555~55555 5555~5 555555 5555555555555555555555S55555555555555555 555 5 5555

s1s 6 6 6 C66666&G866666666G666666G6G6666G66G666r:6666666666666666666666666666 66666666
I

717 7 7 7 7 7 7 7 7 7 7 77 7 7 7 11 1 1 11 77 77 77 7 7 77 7 77 7 7 7 77 7 7 1 7 7 7 7 7 7 7 7 7 7 7 77 7 7 l 7 7 77 7 77 77 7 7 7 77777777

❖ 8 8 8 ssaaaaaaasaaasasaaaaaaasaaaassaasaaasasaaa aaaaaa asaaaaaaasaaaaasasaa aaas aaa

999999999999g9999999999999999999999999999999999999s999999999999999 9 99 9 99999 1 gig g 9 9
ti ' l 4) 1111 10111213141$ 1,1, 1t1§~~n n 2•~nv a m ~11n~M~•v•••~ u a~a•u~ff~ 51~uM~Ys1~ " oos1 uaM~" ~ • N ~ 11 n n ~~ nn n1t•

1•• 8 8EU -,7

Figure 2. Fortran Statement Card

Comments Line

If the user wishes to have comments or notes appear­
ing in the source program listing, he may use a line
(or lines) of the coding sheet strictly for comments.
A comments line is coded as follows:

1. Column 1 contains a C . This identifies the com­
ments line to the processor.

2. Columns 7-72 may be used to contain the comments
or notes.

3. Columns 73-80 may be used for iJentification. The
processor docs not process these columns.

Punching a Source Progl'am

Each line of the coding sheet is punched, column for
column, i:nto a separate Fortran statement card. The
Fortran statement card is shown in Figure 2. These
punched cards form the Fortran source program deck.

Constants, Variables, :Subscripts,

Functions, and Express ions

Constants, variables, and functions separated and re­
lated by arithmcti.c operation signs form an arith­
metic expression. (Variables can be subscripted to
express one- or two-dimensional variable arrays.) The
degree of precision of the value of an arithmetic ex­
pression is called arithmetic 71recision.

Arithmetic Pre cision

The degree of precision of an arithmetic expression
(the number of digits retained) can be set by control
card. The degree of precision for fixed-point and
fl.oating-point arithmetic calculations is set separately.
Fixed-point precision (designated by the letter k) can
be set to any value from 1 through 20. If any result
from a fixed-point calculation exceeds k digits, the
leftmost (high-order) extra digits are dropped.

Floating-point precision (designated by the letter f)
can be set to any value from 2 through 20. All floating­
point calculations are performed to a precision of
f + 2 digits, and ultimately rounded to f digits.

vVhere no specification of precision is made:

1. fixed-point precision is 5 decimal digits.
2. floating-point precision is 8 decimal digits.

Constants

Two types of constants arc permitted in a 1401 Fortran
source program: fi.xed-poi.nt and floati.ng-710int.

Fixed-Point Constants

General Form: A fixed-point constant consists of from
1 to k decimal digits written without a decimal point
(as integers).

7

Examples:
I
2
+ 524267
- 28987

Floating-Point Constants

General Form: A floating-point constant consists of
any number of digits with a decimal point. E fol ­
lowed by an integer (signed or unsigned) designates
multiplication by a power of 10. Floating-point con­
stants can contain any number of digits but only a
maximum of f significant digits are retained. Float­
ing-point constants of 11 significant digits, where n
< f, will have n digits of precision. The magnitude
of a Boating-point constant may lie between the
limits 10 - 100 and (1 - 10 ·1) X 1099 or be exactly
zero.

E-xamples:

17.
5.0

.0003
5.0E3 i.e., 5.0 X 10~
5.0E + 3 i.e., 5.0 X 10 +3
5.0E - 3 i.e., 5.0 X 10 -3

Within storage, a floating-point constant of n signi­
ficant digits consists of s + 2 digits, where s is the
smaller of n or f. For example, if f is defined as 18, a
number in the source program having 18 or more
significant digits results in a 20-digit real number, 18
for the mantissa and 2 for the characteristic. If the
constant contains 13 signiflcant digits (f = 18), the in­
ternal representation will have the 15 digits: 13 for the
mantissa and 2 for the characteristic.

Variables
Variable quantities are represented in 1401 Fortran
statements by symbolic names. Variable names con­
sist of from one to six alphameric characters (no
special characters), of which the first character must
be alphabetic. The first character of a variable name
denotes which of the two types of variables a parti­
cular variable is: (1) fixed-point or (2) floating-point.

Fixed-Point Variables

General Form: All variables whose symbolic name
begins with the letter I, J, K, L, M, or N arc fixed­
point variables.

Examples:

I
M2RB3
J013NO

8 Fortran: 1401 Specs. and Op. Proc.

A fixed-point variable can assume any integral value
(1, 2, 3, etc.) less than lOk (where k is the integer pre­
cision).

\Nhen the value assumed by a nxccl-point variable
has fewer than k digits, high-order zeros are added.
When the value exceeds k digits, only the k rightmost
digits are retained.

Flociting-Point Variables

General Form: A variable whose symbolic name be­
gins with an alphabetic letter other than I, J, K, L, M,
or ?\ is a Hoating-point variable.

Examples:

A

B7
DELTAl

A floating-point variable can assume any value ex­

pressible as a normalized floating-point number. That
is, i t can be between the limits 10- 100 and {l - 10-f) X
10"0, or be exactly zero. A precision of f digits is car­
ried in the mantissa.

Cautions in_ Naming Variables

To avoid the possibility that a variable name may be
considered by the compiler to be a function name,
two rules should be observed with respect to naming
fixed- or floating-point variables:

1. A variable should not be given a name that is
identical to the name of a function without its ter­
minal F. Thus, if a function is named TIMEF, no
variable should be named TIME (see Fu.nctions).

2. Su.bscripted variables should not be given names
ending with F.

Subscripts

A variable can be made to represent any element of a
one- or two-dimensional array of quantities by ap­
pending one, or two subscripts, respectively, to the
variable name. The variable is then a subscripted
vm·iable (see Subscripted Variables). The subscripts
arc expressions of a special form whose value deter­
mines the member of the array to which reference is
made.

Form of Subscripts

General Form: A subscript may take only one of the
following forms, where v represents any unsigned,

nonsubscriptc<l fixed-point variable, and c and c'
represent any unsigned fixed-point constant:

V

C

v + c
v - c
C :a: V

c * v + c' or c * v - c'

(The * d,·notcs multiplication.)

Examples:

!MAS
J()
K2
N + 3
8 ,, !QUAN

5''L +7
4 • M-3
7 + 2 ''' K (invalid)
9 -r- J (invalid)

Subscripted Variables

General Form: A subscripted variable consists of a
variable name (fixed- or floating-point) followed by
parentheses enclosing one or two subscripts, sepa­
rated by commas.

Examples:

A (I)

K (3)

BETA (8 * J -1- 2, K - 2)
MAX (I, J)

1. Any subscripted variable must have the size of its
m-ray (i.e., the maximum values its subscripts can
attain) specified in a DIMENSIOJ\ statement pre­
ceding the first appearance of the variable in the
source program. See DIMENSION.

2. The variable in a subscript must be greater than
zero, but not greater than the corresponding array
dimension.

Arrangements of Arrays in Storage

One-dimensional variable arrays arc stored sequen­
tially. Example: The array A(I), where I takes the
integer values from 1 to 10, is stored in the sequence,
A(l), A(2j, A(3), .. . , A(lO).

A two-dimensional variable subscript can be thought
of as designating rows and columns of variables, for
example, the two-dimensional array designation A(l, J)
can be thought of as A (I rou;, J column). Two-dimen­
sional arrays are stored sequentially by columns. Ex­
ample: HA (I, J) represents a 3x2 array (I= l , 2, 3 and
J= l, 2), the array is stored in the sequence A(l, 1),
A(2, 1), A(3, 1), A(l, 2), A(2, 2.), A(3, 2).

Functions
A function consists of a function name and a function
routine. One argument is appended (in parentheses)
to each function name. The argument can be any valid
1401 Fortrau expression, either a fixed- or floating­
point expression (as the function routine requires). The
function name links the argument to the function
routine.

Function routin<,'S are closed routines, which appear
in the object program only when called, and then
only once, regardless of the number of references.

The function name can be comprised of from 4 to
7 alphameric characters (not special characters). The
first character must be alphabetic, and the last char­
acter mnst be the letter F. The first character must be
X if and only if the value of the function is to he fixed
point.

t:xamples:

SINF(A)
LOCF(C)
XFIXF(B)
FLOATF(l)

1401 Fortron Functions

1401 Fortran includes ten function subroutines:

F'unction

Sl l'iF
COSF
ATANF
LOCF
EXPF
SQRTF
ABSF
XABSF
FLOATF
XFIXF

Res,.,lt

trigonometric sine of argument
trigonometric cosine of argument
trigonometric arctangent of argument
natural logarithm of argument
argument power of e
positive s<iuarc root of argument
absolute value of floating-point argument
absolute value of fixed-point argument
<:onvcrt fixc<l-point argument to floating point
convert floating-point argument to fixed point

The first seven functions listed require that both the
argument and the computed value of the function be
in Hoating-point form. For XABSF, both argument and
function are fixed-point. For FLOATF and XFIXF,
argument and function are of opposite form as speci­
fied.

User Functions

1401 Fortran allows the addition of up to twelve user
functions . (Each function consists of a function name
and a corresponding function routine.)

Function Name

The user may choose any name he wishes as long as
it conforms to the specifications previously discussed
under the general form of a function.

The function name is added to the 1401 Fortran
table of functions. Sec Adding the Function Name.

9

Argument

The argument of the function may be any valid fixed­
or floating-point expression. No single function may
take both fixed- an<l floating-point arguments.

If a given operation is to give:

1. fixed- and floating-point functions, using

2. both fixed- and floating-point arguments, four sepa­
rate functions must be set up, one for- each func­
tion-argwnent combination.

Note: ff more than one function routine for a given operation is
to appear in the same program (or proi,:ram segment), the nnme
of the routines may be similar, hut not the s:une. For example ,
the following four funcl"ion names might be used when all four
function -argun1('nt combiuations ::trc required for a cube-root
operation:

l. CUBRTF (fixe<l-p<>int argument)
2. CUBRTOF (floating-point argument)
3. XCBRTF (fixed-point argument)
4 . XCBRTOF ((loating-point argument)

Function Routine

The function routine is to be coded in 1401 Autocoder.
Each function routine is assembled separately, and
the assembled routine is then placed in the 1401 For­
tran compiler. See Incorporating the User's Function
into 1401 Fortran.

The user must consider the following restrictions
when coding his function routines:

l. The routine's origin must be at position 2000.
2. The routine's length must be less than 2000 posi­

tions.

3. Any actual address is not relocated.

4. Any symbolic address that is assembled below posi­
tion 2000 is not relocated.

5. No DA, XFR, or EX statements may be used.
6. No address constant whose operand is relocatable

may be used.

In coding a function routine, the user must study
the construction of arithmetic strings and the 1401
Fortran arithmetic routine. The Fortran function sub­
routines can be used as examples of how the func­
tions must be coded to fit into the compiled program.

In the simplest case for example, where the source
statement is :

Y = FUNCF(X),
xxx is the address of the variable X, yyy is the address
of the variable Y, and R is the identifier of the func­
tion FUNCF; the arithmetic string compiled from
the arithmetic statement is:

~100yyy ~xxR !
At t he time an arithmetic statement is executed,

the three-character machine address of the compiled

10 Fortran: 1401 Specs. and Op. Proc.

statement within the arithmetic string (the nrst posi­
tion after !} 700) is stored in posit.ions 084-086. There­
fore in his function routine the user can refer to the
address of the compiled arithmetic statement contain­
ing the reference to the function by using the contents
of positions 084-086.

For convenience, the address stored in locations
084-086 will be referred to as ARADR. Therefore the
address of yyy in our example is ARADR+ 2, the ad­
dress of xxx is ARAD R +6, and the address of the
next statement to be executed in the program is
AHADR+9. Any zone bits present in the tens posi­
tion of xxx and yyy do not refer to address modifica­
tion by an index register.

At the time of the branch to the function, the 1401
Fortran arithmetic routine has processed the argument
X. The value of X is stored in a field whose address is
279+X3 (index register 3). Position 280 of this field
contains a wonl mark. If X is a fixed-point variable,
index register 3 contains the fixed-point precision
value, k. If X is a floating-point variable, index register
3 contains the floating-point precision value plus two
(f+ 2), position 280 contains the most significant (left­
most) digit of the mantissa, and the characteristic
{exponent) is stored in positions 1677-1679. (If the
mantissa is zero, the equal-compare latch is set.)

The following space is available to the user:
l. positions 1-80.
2. the index regbter positions.
3. positions 100-332.
4. any unused storage.
5. any area reserved by the control card.

Arithmetic Expressions

An expression is a meaningful sequence of constants,
variables (subscripted or non-subscripted), and func­
tions, separated by arithmetic operation symbols.

Examples:
l
A
I
A(I)
A(I)+(B/ C)•2.0
A*• I - (2. *B)/ C

Arithmetic Operation Symbols

The five basic arithmetic operations are expressed by
the following symbols:

+

I
**

{plus sign; addition)
(minus sign; subtraction)
(asterisk; multiplica tion)
(slash; division)
(two asterisks; exponentiation).

Rules for Writing Expressions

The following rules must be observed when writing
1401 Fortran expressions:

1. The mode of arithmetic in an expression can be
either fixed-point or floating-point, and must not be
mixed except in the following cases:

a. A floating-point quantity can appear in a fixed­
point expression as an argument of a function
such as, XFIXF(C).

b. A fixed-point quantity can appear in a floating­
point expression as a function argument, such as
FLOATF(I); as a subscript such as A(J, K); or
as an exponent such as A*"' N.

2. Two arithmetic-operation symbols cannot appear
together, unless they arc, separated by parentheses.
Therefore A* - B and + --A are not valid expres­
sions; however A* (-B) and -1-(- A) are valid ex­
pressions.

3. In exponentiation:
a. A Hoating-point exponent should not be used

with a base that is a negative number, because
a non-integer power of a negative number can
lead to imaginary values. Also, if a floating-point
exponent of a negative number is integral, the re­
sult will be a positive number regardless of
whether the exponent is odd or even.

b. A fixed- or floating-point negative number raised
to a fixed-point power gives the answer with
the correct sign.

c. A fixed-point zero raised to a fixed-point power
other than zero results in a fixed-point ~ero an­
swer. A floating-point zero raised to either a
fixed- or floating-point power other than zero
results in a floating-point zero answer.

cl. Zero to the zero power will give the results in­
dicated in each of the following cases:
0**O= 1
0.**0 = 1.
o. "'*0. = 1.

Nole: Zero to the zero power also causes the e rror message
ZTZ to be printed.

Hierarchy of Operations

The use of parentheses in an algebraic expression
dearly establishes the intended sequence of opera­
tions. The heirarchy of operations in an expression not
specified by the use of parentheses is in the usual
order:

Exponentiation
Multiplication and Division
Addition and Subtraction

For example, the expression

A+ B/ C-I D**E*F-C

is taken to mean

A+ (B/C) + ((D**E)*F) - G

Parentheses that have been omitted from a sequence
of consecutive multiplications and divisions (or con­
secutive additions and subtractions) are understood
to be grouped from the left. Thus, if o represents
either * or / (or either + or -), then

AoBoCoDoE

will be taken by Fortran to mean

((({AoB)oC)oD)oE)

The expression A8c, which is sometimes considered
meaningful, cannot be written as A *"'B**C. It should
be written as (A**B) **C or A** (B**C), whichever
is intended.

1401 Fortran Statements

There arc 25 different statements in the 1401 Fortran
language. They are divided into four groups:

1. The arithmetic statement specifies a numerical com­
putation.

2. Control statements govern the flow of the program.
There arc eleven different control statements.

3. Input/Output statements provide data input and
output in a specified format. There are eleven dif­
ferent input/output statements.

4. Spec·ificatio,i statements provide information about
the storage allocation of the variables used in the
program. There arc two specification statements.

Arithmetic Statement
The 1401 Fortran arithmetic statement defines a nu­
merical calculation. It closely resembles a conven­
tional arithmetic formula; however, the equal sign of
the statement specifies replacement rather than equiv­
alence.

General Form: a = b, where:

1. a is fixed- or floating-point subscripted or non­
scripted variable.

2. b is an expression.

Examples:

Ql = K
A (I) == B (I) ;- SI NF (C (I))

11

The result of the arithmetic calculation specified by
the expression (b) is stored in the field designated by
the variable (a) on the left in fixed- or floating-point,
according to whether the variable is fixed point or
floating point.

If the variable on the left is fixed point and the ex­
pression on the right is floating point, the result will
first be computed i11 .floating point and then truncated
to an integer. Thus, if the result is +3.872, the fixed­
point number stored will be -;-3 (not + 4) . If the
variable on the left is floating point and the expression
on the right fixed point, the fatter will be computed
in fixed point, and then converted to floating point.

Arithmetic statements can produce a number of use­
ful effects. Here are some examples:

A= B
l = B

Store the value of B in A.
Truncate B to an integer, convert to
fixed point, and store in I.

A = I Convert I to floating point, and store
in A.

I = l -l -1 Add 1 to I and store in I. This example
illustrates the fact that an arithmetic
statement is not an equation, but is an
instruction to replace a value.

A = 3.0°B Replace A by 3B.

However, be careful to avoid invalid statements such
as:

A = 3°B

A = 1°B

Not accepted. The expression is mixed,
i.e., contains both fixed-point and float­
ing-point quantities.

Not accepted. The expression is mixed.

Note: If ch:uncters that were rend under the A-conversion
formnt-specificntion (sec A-Conoersion) arc referenced in an
arithmetic statement, only the numeric portion of these charac­
ters (except for the sign) are considered. For example, MIN
would be equivalent to - 495.

Control Statements

The second category of 1401 Fortran statements is a
set of eleven statements enabling the user to control
the sequence in which the program statements are to
be executed.

Unconditional GO TO

General Form: co to n.
n is a statement number.

Example:

{;0 TO 3

The unconditional co TO statement transfers control
of the program to the specified statement.

12 Fortran: 1401 Specs. and 011. Proc.

Computed GO TO

General Form: co TO (n,, n,, ... , n..,), i
n ., n,, ... , nm are statement numbers and t IS a
non-subscripted fixed-point variable. The range of
i must be such that the value of i is 1 _::;;: i ~ 10.

Example:

GO TO (30, 42, 50, 9), I

The computed co TO statement transfers control to
statement number n,, n,, n,,, . .. , nm, depending on
whether the value of i at the time of execution is 1, 2,
3, ... , m, respectively. Thus in the example, if I is
3 at the time of execution, a transfer to the statement
whose number is third in the list, statement 50, will
occur. This statement is used to obtain a computed
many-way branch.

IF

General Form: IF (a) n., n,, n,
a is an expression and n., n,, n, are statement mun­
bers.

Example:

II' (A (J, K) - B) 10, 4, 30

The 1F statement conditionally transfers control to
another statement of the program. Control is trans­
ferred to the statement number n,, n,, or n,, depend­
ing on whether the value of a is less than, equal to, or
greater than zero. Thus, in the example, if (A(J, K) -
B) is zero at the time of execution, transfer to state­
ment number 4 occurs.

Sense Light

General Form: SENSE LIGHT i

i is 0, l , 2, 3, or 4.

Example:

SENSE LIGHT 3

The term sense light refers to symbolic binary switches
in the 1401 system. If i is 0, all sense lights are turned
oH; otherwise SEKSE LIGHT i is turned on.

IF (Sense light)

General Form: IF (sENSF. LlCIIT i) n., n,

n, and n:1 are statement numbers and i is 1, 2, 3,
or 4.

Example:
IF (SENSE LIGIIT 3) 30, 40

Control is transferred to statement number 111 if sense
light i is on, or statement number n, if sense light i
is off. If sense light i is on, it is turned off.

IF (Sense Switch)

General F onn: IF (SENSE swn c1-1 -i) n,, n,
n, and n2 arc statement numbers and i is 1, 2, 3, 4,
5, or 6.

Example:

It" (SENSE swncH 3) 30, 108

Control is transfened to statement number n, if
sense switch i is on, or statement number n2 if sense
switch i is off. Sense switches B through C correspond
to the values of i, l through 6, respective'ly.

Last Card Test. A test for the last card can be made
using the statement IF (SENSE swrrcH O) n., 110 • With
sense switch A on, the JF (SENsi,: swrrcH O) n., n,
statement will transfer program control to statement
n, when the last card indicator is on; otherwise
control will transfer to n2 • (This particu Jar form of
the statement is unique to 1401 Fortran.)

DO

General Form: oo n i = m,, m, or oo n i = m ,, m2, rn,.
n is a statement number, i is a nonsubscripted fixed­
point variable, and m,, m 2 , mJ arc each either an
unsigned fixed-point constant or nonsubseripted
fixed-point variable. If m,. is not stated, it is taken
to be l.

Examples:
DO 30 I= l , JO
DO 30 I = 1, M, 3

The DO statement i5 a command to execute repeatedly
the statements that follow, up to and including state­
ment number n. The first time, the statements arc
executed with i = m,. For each succeeding execution,
i is increased by m,,. After they have been executed
with i equal to the highest value that docs not exceed
m2, control passes to the statement following the last
statement in the range of the no. If, in the initial setup,
m, > m2 , there is no execution of the loop.

The range of a oo is that set of statements that will
be executed repeatedly; that is, it is the sequence of
consecutive statements immediately following the DO,

up to and including the statement numbered n.

The index of a oo is the fixed-point variable i, which
is controlled by the no in such a way that its value
begins at m,, and is increased each time by m:i, until
it is about to exceed m,. Throughout the range of a
DO, i is available as data for any computations, either
as an ordinary fixed-point variable or as the variable
of a subscript. After the last execution of the range,
the oo is said to he satisfied.

As an example of the use of a DO statement , suppose
that control has reached statement 10 of the program:

10 DO 11 I = 1, 10
11 A(l) = I 0 N(I)
12

The range of the oo is statement 11, and the index is
I. The DO sets I to 1 and control passes into the range.
The value of N, is converted to floating point, and
stored in location A,. Because statement 11 is the last
statcrne11t in the range of the oo and the vo is un­
satisfied, I is increased to 2 and control returns to the
beginning of the range, statement 11. The value of
2N, is then computed and stored in location A2• The
process continues until statement 11 has been exe­
cuted with I = 10. Because the oo is 110w satisfied,
control passes to statement 12.

Among the statements in the range of a DO can be
other vo statements. If the range of a DO includes an­
other oo, then all of the statements of the included no
must also he in the range of the inclusive DO. A set of
oo's satisfying this rule is called a nest of DO's (Fig•
ure 3).

No transfer is permitted into the range of any uo
from outside its range. For example, in Figure 3, 1, 2,
and 3 are permitted transfers, but 4, 5, and 6 arc not.

When control leaves the range of a DO in the ordi­
nary way (that is, when the oo becomes satisfied and
control passes on to the next statement :1fter the range)
the exit is said to be a 11ormal exit. After a normal exit

DO

~ -oo-~• "' • ~
----- - ----- ---!• 2 Yos

--------------- S N o

==:), '•• • No

Figure 3. Nest of DO's

13

from a oo occurs, the value of the index controlled by
that DO is not defined, and the index cannot be used
again until it is redefined.

However, if exit occurs by a transfer out of the
range, the current value of the index remains available
for any subsequent use. If exit occurs by a transfer
out of the ranges of several Do's, the current values
of all the indexes controlled hy those oo's are pre­
served for any subsequent use.

Restrictions on statements in the range of a DO are:

I. Any statement that redefines the value of the index
(i) or of any of the indexing parameters (m's) is
not permitted.

2 . The first statement in the range of a DO must be an
executable Fortran statement.

3. The last statement is the range of a DO cannot be
a branch instruction (see Continue).

Continue

General Form: CONTINUE

Example:

CONTINUE

CONTlNUE is a dummy statement that causes no addi­
tional instructions in the object program. It is most
frequently used as the last statement in the range of
a DO to provide a branch address for IF and co TO

statements that are intended to begin another repeti­
tion of the DO range.

An example of a program that requires a CONTINUE

is:

10 DO 12 I = 1, 100
11 IF (ARG-VALUE(I)) 12,20, 12
12 CONTINUE

This program will scan the 100-cntry VALUE table
until it finds an entry that equals the value of the
variable ARC, whereupon it exits to statement 20 with
the vnlue of I available for subsequent use. If no entry
in the table equals the value of ARC, a normal exit to
the statement following the CO:-lTINUE occurs.

Pause

General Form: PAUSE or PAUSE n
n is an unsigned fixed-point constant less than 10''.

11 Fortr(ln: 1401 Specs. mul Op. Proc.

Examples:

PAUSE

PAUSE 777

During the execution of the object program, the PAUSE
statement causes the machine to halt and display at
the console the number n (see Ob;ect Time Halts ur
Error Conditions). If n is not specified, it is understood
to be zero. Pressing the start key causes the object
program to resume execution at the next instruction.

Stop

General Form: sTor or STOP n
n is an unsigned fixed-point constant less than 10".

Examples:

STOP

STOP 333

The STOP statement causes a halt in such a way that
pressing the start key has no effect. Therefore, in
contrast to PAUSE, this statement is used where a
terminal, rather than a temporary, stop is desired.
When the program halts, the number n is displayed
on the console. (See Object Time Halts or Erro1· Condi­
tions.) If n is not specified, it is understood to be zero.

End

General Form: END

Example:

END

The END statement is the last statement of the source
program. Although the general form of this statement,
as specified for other Fortran systems, is permissible
when used in a 1401 source program, only the word
EKD has any significance.

Input/ Output Statements

There are eleven 1401 Fortran statements available
for specifying the transmission of information, during
execution of the object program, between storage and
input/output units :
] . Five statements (READ, REA]) INPUT TAPE, PUNCH,

PmNT, and WRITE OUTPUT TAPE) that cause trans­
mission of a specified list of data between storage
and an external input/output medium such as
cards, printed sheet, or magnetic tape.

2. One statement (FORMAT) that is non-executable. It
specifies the arrangement of the information in the
external input/ output medium with respect to the
five input/ output statements of group 1, and con­
verts the information being transmittt:ld, .if nec­
essary, to or from an internal notation.

3. Two statements (11EA1> TAPE, and WRIT£ TAl'J•:) that
cause the transmission of information that is al­
ready in internal machine notation, and thus need
not be converted unckr control of a FORMAT state­

ment.

4. Three statements (END FILE, nEwlND, and BACK­

SPACE} tha t control magnetic tape units.

Lists of Qvontities

Of tho eleven inpnt/ output state ments, st>v<"n call for
the transmission of information and must include a
list of the quantities to be transmitted. The or<lcr must
be the same as the order in which the vvords of infor­
mation exist {for input), or will exist (for output) in
the input/ output medium.

F or example, if the list:

A, B (3), (C(I) , D (f,K) , J -- 1, 10), ((E (I, J),
I = l. 10, 2), F (J, 3) , J "-' l, K)

is used with an output statemC'nt, the information will
he written on the output medium in the order:

A, 13 (3), C (l), D (l, K), C (2), D (2, K), .

D (10, K) ,
E (1, 1), E (3, 1),
E{l, 2) , E{3, 2),

, E (9, 1), f (l , 3) ,

, EUl, 2), F (2, 3) ,

E(l , K) ,E(3, K) ,. , E (!::l. K), F (K, 3)

, C(lO),

If the list is used with an input sta tement, the in­
formation is rca<l into storage from the input medium.
The order of the list c·an be considered equivalent to
the "program" :

l A
2 B (3)
3 DO 5 I = 1, 10
4 C (I)

5 D(I, K)

6 D O 9 J ~-.-: 1, K
..,
I DO 8 I = 1, 10. 2
8 E (I, J)
9 F (J, ,'3)

Note that the parentheses i11 the original list define
the ranges of the implied vo-loops.

Fora list of the form K. A (K) orK, (A (I), I = 1, K)
where an index or index:ing paranwter itself a ppears
earlier in the list of an input statement , the indexing
will h e ca rried out with the newly read-in val11c.

Motrkes

1401 Fortran treats variables according to conventional
matrix practice. Thus, the input/ output sta tement

111::AJ) l , ((A(I , J), I :_, L 2) , J ,_-_ 1, 3)

causes the reading o f six (2 rows X 3 colnrnns) i t('l11s

of information. The items will Le r Pad into stomgc in
the same order as they are found on the input medium:

Note that the numeral 1, following HE AD, in thb
case specifics format statement nnrnber l (sec For111at).

vVhcn input/ output of an entire matrix is desired , an
ahhrcviated notation can be med for the list of the
input/ output statement. 01ily th<: format-stateme nt
number and the name of the array arc require-cl. Thus,

the statement,

[IF.AD 1, A

is sufficient to read in a 11 of the c lements of the array
A , accorcling to format s ta t<'mc nt 1111mhcr 1. 111
1'101 Fortr:tn. the ck111e11ts, read iu by this notation,
arc slurccl in their natural ord l'r, that is, in order of
increasing storage. Note that the dimensions of an ar­
ray must be spccific cl (sc'.c Dimension).

Format

The five i11put/ output statcnw11ts of group one (sl'e
lnp11t-Out7n11 Stat<'m <'nls) req uire, in addition to a list
of quantities to be tra11s111ittecl, reference to a H>JL\ l AT

stal'cmcnt that d escribes the type of conversion to be
performed between the intn11al machine la11~11agc and
the external notation for each quantity in the list.

General Fom1:

f'OHMAT (5, , S,, , S'.,/)

E,tcl1 field, S,, is a format spec ification.

F.xample :

FOHMAT (!2l(El2.4, Fl0.2))

1. FOHMAT statements are not executed. They can be
p laced a11ywherc in the source program, except as
the first statement in the range of a DO st:1tc•1nent.
Each FOR~·CAT staterncnt m ust be given a stateme nt
number.

2. The FOH~t ,\T statenwnt indicates, among other
things, th0. maxirnum size of ~ach record to IH' tr,ms­
m ittn l. In this c orn1cctio 11, remember that t·lw ..-011-

~tAT statement is usf' d in con junc tio11 with the list
of some pa rticular inp11t/outp11t stat1·111c11t . <'Xc<'pt
wlwn a VOTI).IAT statenw nt consists <'rttir<:ly of II
conversion ht'ld s. J 11 all other cases, control in tile'
object program switches back aud forth])l'tWCl'II

1$

the list (which specifies whether data remains to be
transmitted) and the FORMAT statement (which
gives the specifications for transmission of that data).

3. Records must consist of one of the following:
a. A tape record with a maximum length corre­

sponding to the printed line of the printer.
b. A punched card with a maximum of 80 char­

acters.
c. A line to be printed on-line, with a maximum of

100, or 132 characters, depending on the printer
used.

4. The initial left parenthesis begins a record. In a
read operat ion this means that a record is read.
However, in a write operation, an output record is
begun, but not written.

5. A slash terminates the current record. If list ele­
ments remain to be transmitted, a slash also begins
a new record. In a read operation a slash means
that no more information is obtained from the last
record read; and in a write operation, that the
output record which has been developed is written
(even though blank, as when two slashes are ad­
jacent).

6. The final right parenthesis of the FORMAT statement
terminates the current record. If list elements re­
main to be transmitted, it also begins a new record
and repeats. A repeat starts with the last repetitive
group if there is one. (Sec Repetition of Groups.)
Otherwise it starts with the specification immedi­
ately following the first left parenthesis of the
FORMAT statement.

7. During input/output of data, the object program
scans the FORMAT statement to which the relevant
input/output statement refers. When a specification
for a data field is found and list items remain to be
transmitted, editing takes place according to the
specification, and scanning of the FORMAT statement
resumes. If no list items remain, the current record
and execution of that particular input/output state­
ment are terminated. Thus, an edited input/ output
operation is brought to an end when no items re­
main in the list, except when the next element to
the right is an H conversion. In this case, the H
conversion is transmitted.

Format Specification

FORMAT statement specifications designate:

For input:

l. The arrangement of data read in.
2. The type of conversion required for numeric data.

16 Fortran: 1401 Specs. and Op. Proc.

3. The space set aside for alphameric text to be read
in.

4. The input fields to be skipped or ignored.
5. The extent of each input record.

For output:

I. The arrangement of data to be written, punched, or
printed out.

2. The type of conversion and scale factor required
for each numeric field.

3. The alphameric text to be written, punched, or
printed out.

4. The output fields to be skipped or ignored,
5. The extent of each output record.
6. (In printing) the printer carriage-control character.

Nvmeric Field Specifications

Three types of conversion are available for numeric
data:

Internal Conversion Code

Floating point E
F loating point F
flxed point I

External

Floating point with E e.xponcnt
Floating point without exponent
Fixed point

These types of conversion are specified in the forms
Ew.d, Fw.d, lw, where:

l. E, F, and I represent the type of conversion
2. w is an unsigned fixed-point constant that repre­

sents the field width for converted data. This field
width can be greater than required in order to pro­
vide spacing between numbers.

3. d is an unsigned fixed-point constant or zero that
represents the number of positions of the field that
appear to the right of the decimal point.

For example, the statement FORMAT (lHb, 12, El2.4,
Fl0.4) causes the following line to print (when given
in conjunction with a PRINT statement):

+ - +
Stored data Q0027 ~320963102 7634352602
Field specifications 12, E12.4, Fl0.4
Printec;I line 27b- 0.9321Eb02bbb- 0.0076

where b represents blanks. (See Carriage Control for
an explanation of the specification lHb.)

Notes on E-, F-, and I-Conversion

1. Specifications for successive fields are separated by
commas.

2. No format specification that provides for more char­
acters than permitted for a relevant input/output
record should be given. Thus, a format for a record

to be printed should not provide for more charac­
ters (including blanks) than the capabilities of the
printer.

3. Information to be transmitted with E- and F-con­
version must have floating-point names. Informa­
tion to be transmitted with I-conversion must have
fixed-point names.

4. The field width w, for F-conversion on output, must
include a space for the sign, a space for the decimal
point, and a space for a possible zero which pre­
cedes the decimal if the absolute magnitude is less
than 1. Thus w .> d + 3.

Note, The maximum value of d that ~an be used is 20.
The field width w, for £ -conversion on output, must
include one space for the sign, one space for possi­
ble rounding, one space for a decimal point, and
four spaces for: the E, exponent sign, and exponent.
Thus w ~ the scale factor + d + 7.

5. The exponent, which can be used with E-conver­
sion, is the power of 10 to which the number must
be raised to obtain its true value. The exponent is
written with an E followed by a minus sign if the
exponent is negative, or a plus sign or a b lank if the
exponent is positive, and then followed by one or
two numbers wl1ich are the exponent. For example,
the number .002 is equivalent to the number .2E-02.

6. If a number converted by I-conversion on output re­
quires more spaces than are allowed by the field
width w, the excess on the high-order side is lost.
If the number requires fewer than w spaces, the
leftmost spaces arc filled with blanks. If the number
is negative, the space preceding the leftmost digit
will contain a minus sign if sufficient spaces have
been reserved, otherwise the minus sign will be lost.

Scale Factors (With Output Only). A scale factor can
be applied to data that is to be written, punched, or
printed as a result of F-type conversion. The scale
factor is the power--of-10 by which data is multiplied
before conversion. The designation nP, preceding an
F-type Seid specification, indicates a scale factor n.
For example, the specification 2PF10.4 results in multi­
plication of the <lata by 100 (102

) before conversion.
Thus in the earlier example, the internal data

1634352602 prints as: bbb-0.7634. Scale factor (for
F-type conversion only) can be e ither a positive or
negative number.

Scale factor can also be used with E-type conver­
sion for output. However, only positive scale factors
nre allowed, and the magnitude of the converted data
remains constant because the shifting of the decimal
point to the right is offset by reduction of the E-expo­
nent. Thus in the earlier example, the field specifica-

- +
tion 2PE12.4 causes the internal data 9320963102 to
print as : - 93.2096Eb00.

Scale factors have no effect on I-type conversion.

A scale factor of zero is assumed if no other factor
is given. A scale factor assigned to an E- or F-type
conversion applies to all subsequent E- or F-type con­
versions in the same FORMAT statement, until nullified
by n different scale factor. Thus, for example, the
specifications 2PF 10.4, El2.4, 4PF10.4, El2.4, have the
same effect as the specifications 2PF10.4, 2PE12.4,
4PF10.4, 4PE12.4.

Alpham•ric Field Sp•cificotions

Fortran provides two ways by which alphameric infor­
mation can be transmitted. The internal representation
of the data is the same as the external for both speci­
fications.

1. The specification Aw causes w characters to be
read into, or written from, a variable or array name.

2. The specification nH introduces alphameric infor­
mation into a FORM AT statement.
The basic difference between A- and H-conversion
is that information handled by A-conversion is
given a variable name or array name. Hence, it can
be referred to by means of this name by more than
one input or output statement list. 'Whereas, infor­
mation handled by H-conversion is not given a
name and may not be referred to or manipulated in
storage in any way.

A-Conversion. The variable name used in conjunc­
tion with A-conversion must be a floating-point vari­
able.

1. On input, Aw will be interpreted to mcim that a
field of w characters is to be stored without con­
version. If w is greater than f, the extra (w - f)
rightmost characters will be dropped. If w is less
than f, the characters will be left-adjusted, and the
words filled out with blanks.

2. On output, Aw will be interpreted to mean that a
field of w characters is to be the result of t rans­
mission from storage without conversion. If w ex­
ceeds f, only f characters of output will be trans­
mitted followed by w -f blanks. If w is less than
f the leftmost w characters of the word w ill be
transmitted.

Note: With f = 8, the format specification AlO will print an
eight-character rnantissa and a two-character expone nt.

H-Conversion. The specification nll is followed in
the FORMAT statement by n alphamcric characters, and

17

XY=b-93,210bbbbbbbb
XY:9999.999bbSNSSWl
XY=bb28,768bbbbbbbb

Figure 4. Examples of A- and H-Conversions

should be separated from the next field by a comma.
For example:

3lll THIS IS ALPIIAMEIUC INFOI\MATION

Note that blanks are considered alphameric charac­
ters and must be included as part of the count n. The
effect of nH depends on whether it is used with input
or output.

1. On input, n characters are extracted from the input
record and replace the n characters included with
the source program FOHMAT specification.

2. On output, the n characters following the specifica­
tion, or the characters that replaced them, arc writ­
ten as part of the output record.

Figure 4 shows an example of A - and II-conversion
in a FOHMAT statement.

The statement FORMAT (4HbXY = , F8.3,A8) might
produce the lines shown in Figure 4 where b indicates
a blank character.

Figure 4 assumes steps in the source program read
the data SNSSvVl, print the data when sense switch
1 is on, and print a word containing six blanks when
sense switch 1 is off.

Note: FOHMAT (1Hb,3HXY= ,F8.3,A8) is equivalent to FOIi­
MAT (4HbXY= ,F8.3,A8) where b is a blank. See Carriaile
Control.

Blank Fields- X-Conversion

The specification nX introduces n blank characters into
an input/ output record where n must be less than or
equal to the maximum record length.

1. On input, nX causes n characters in the input record
to be skipped, regardless of what they actually are.

2. On output, nX causes n blanks to be introduced
into the output record.

Repetition of Field Format

It may be desired to perform an input or output op­
eration in the same format on n successive fields with­
in one record. This can be specified by giving n, an
unsigned integer, before E, F, I, or A. Thus, the

l8 Fortran: l401 Specs. and Op. Proc.

field specification 3El2.4 is the same as writing El2.4,
El2.4, E l 2.4.

Repe tition of Groups

A repetitive group is a nonzero fixed-point constant
followed by a le ft parenthesis, a specification list, and
a right parenthesis. A repetitive group cannot itself
contain a repetitive group. Thus, FORMAT (2(Fl0.6,
El0.2), I 4) is equivalent to FORMAT (Fl0.6, El0.2,
Fl0.6, El0.2, 14) .

Multiple-Record formats

See Format: General Form, items 3, 4, and 5.

The statement FORMAT (3F9.2, 2Fl0.3 / / 12 //)
would specify a multirecord output block in which
records 1, 6, 11 . . have the format (3F9.2, 2F10.3),
records 2, 7, 12. . . are blank, records 3, 8, 13 . .
have the format (12), and records 4 and 5, 9 and 10,
14 and 15, .. are blank. On input, the same for­
mat descriptions apply and the blank records arc
skipped.

If a multiple-record format is desired in which the
first two records are to be read or written according to
a special format and all remaining records according
to another format, the last record specification should
be defined as a repetitive group by enclosing it in
parentheses; for example,

FORMAT (12. 3El2.4/ 2Fl0.3, 3F9.4/ (10Fl2.4))

If data items remain to be transmitted after the for­
mat specification has been completely interpreted, the
format repeats from the last previous left parenthesis.
Group repetition applies again if it is present. For ex­
ample, consider the FORMAT statement:

FORMAT (3EI0.3, 2 (12, 2Fl2.4), £28.17)

If more items in the list are to be transmitted after
this format statement has been completely used, the
F'OI\MAT repeats from the left parenthesis preceding
12, and the 2 for group repetition preceding this left
parenthesis applies again.

As these examples show, both the slash and the right
parenthesis of the FOilMAT statement indicate a termi­
nation of a record.

Carriage Control

Control of the printer carriage requires a numerical
character (or blank) in the first position of the output
record for each printed line:

blank Singlt:-space before printing
O Donhle-spacc before printing
1-9 Skip to channel 1-9 before printing.

as indicated.

The control character does not appear in the printed
record. This control character is also required in out­
put tape 1·ecords that are to be used for off-line tape­
to-printer operations.

The control character is usually provided by a lH or
IX (see Al11lwmeric Field Specifications) as the first
field specification of a FORMAT specification. For ex­
ample, the field specification .1116 causes a 6 to be in­
serted in the high-order position of the output record.
This in turn causes the printer carriage to skip to
channel 6 before printing. Th,~ specification lX causes
a blank to be inserted in the output record, resulting
in single-spacing the printer carriage.

When alphamerical text is specified for the high­
order field of an output record, the control character
can be induded in the alphamerical field specification.
Thus the earlier example under fl-Conversion 4HbXY
= is changed to 4H6XY = to cau~e the printer
carriage to skip to channel <J. The specification can
also be written 1H6, 3HXY = ·

Data Input to the Object Program

Data input to the object program is punched into cards
according to the following specifications:
1. The data must correspond in order, type, and field

with the field specifications in the FOH:VIAT state­
ment. Punching begins in card column l.

2. Plus signs can be omitted or indicated by a + .
tvlinus signs are indicated by an 11-punch, or an
8-4 punch.

3. Blanks in numeric fields:
a. arc regarded as zeros when no digits appear in

the field (blank field).
b. under E- and F- conversion are ignored when

they are to the left or to the right of uumeric
characters; for example, the field 123bb under
the conversion F5.2 is interpreted as 1.23.

c. under I-conversion arc regarded as zeros when
they are to the left or to the right of numeric
characters.

d. arc not permitted between characters.
4. Numbers for E- and F-conversion can contain any

number of d igits, but only the high-order f digits
of precision will be retained. (No rounding is per­
formed.)

5. ln I-cnnversion only the low-order k digits of pre­
cision will be retained (k is the fixed-point pre­
cision value) .

To permit economy in punching, certain relaxations
in input data format are permitted.
1. Numbers for E-conversion need not have four col­

umns devoted to the exponent field. However, if
the exponent field is not four columns, the decimal

point must be punched (see item 2 below). The
start of the exponent field must be marked by an
E or, if that is omitted, by a ..:.. or - (not a blank).
Thus, E2, E , 2, + 2 and + 02 are all permissible
exponent fields.

2. !\"umbers for E- and F-conversion need not have
their decimal point punched. The format specifica­
tion will supply it. For example, the number
- 09321 E + 02 with the specification EJ2.4 will be
treated as though the decimal point had hccn
punched between the O and the 9. If the decimal
point is punched in the card, its position overrides
the position indicated in the FORMAT specification.

Control of 1/ 0 Operations. The FORl\•IAT statement
indicates the maximum size of each record to be trans­
mitted. Except when a FORMAT statement consists en­
tirely of alphamerical fields, the FORMAT statement is
used with the list for some particular input/output
statement. Control in the object progrnm transfers
repetitively between the list, which specifies whether
data remains to be transmitted, and the FORMAT state­
ment, which gives the specifications for transmission
of that data.

During input/ output of data, the object program
scans the J:'ORMAT statement to which the input/ output
statement refers. When a specification for a numerical
field is found and list items remain to be transmitted,
input/ ot1tput takes place according to the specification
of the FORMAT statement. If no items remain, trans­
mission ceases.

Read
General Form: READ n, List

n is the statement number of a FORM,\T statement,
and List is as previously described under Lists of
Quantities.

Examples:
Hl:AO 1, DATA

m;,rn 1, ((,\IO!A Y (I, J), I = J, 3) , .I :cc l, 5)

The READ statement causes data to be read from one
or more cards as specified by its list and the FORMAT

statement to which it refers. The list specifics storage
locations for numerical input data. The F<>HMAT

statement:

l. Specifics the arrangement of data on the cards.

2. Specifies the type of conversion required for each
numerical data field .

3. Provides space for alphamcrical text to be read
from cards.

4. Specifies card columns that are to be ignored.

5. Should specify a maximum of eighty card columns
for each input record (card) .

See Format Specification.

19

Read Input Tape

General Form: READ INPUT TAPE i, n, List
i is an unsigned fixed-point constaut or a fixed-point
variable, n is the statement number of a FORM,\T

statcme11t, and List is as p reviously described under
Lists of Quantities.

Examples:
IIJC:AD INPUT TAl'E 5, 30, DATA

ui::"" 1NPUT TAPE N, 30, K, A (J)

The REAU INPUT TAP!:: sta te ment causes oue or more
tape records to be read as specified by its list and the
..-on~•fAT statement t o w hich it refers, Data is read in
external notation by symbolic tape unit i, where i
(constant or variable) can range from 1 to 6. The list
specifics storage locations for numerical input data.
The FORMAT statement :

1. Specifies the arrangement of data within tape rec­
ords.

2. Specifics the type of conversion required for each
numerical data field.

3. Provides space for alphamcrical text to be read
from tape.

4 . Specifies dnta fields that are to be ignored.
5. Should specify ,l maximum of 133 characters for

each input tape record.

Hecords should b e greater than 13 characters. necor<ls
of 13 characters or less arc considered noise records
a11 <l are bypassed. Sec Format S7,ecificatio11.

Punch

General Form: PUNCH n, List
ll is the statement number of a FOll:\fAT statement,
and List is as previously described under Lists of
Quantities.

Examples:

l'UNCJI J, CAI.C

l't;NCII 30, (A (J), J =-- I , IO)

The Pt:NC11 slatcrnt'nt causes data to be punched into
one or more cards as specified by its list and the
FOR~rAT statement to which it refers. The list specifies
storage locations of numcric,tl output datn. The F0~­

:-111T stntcment:

1. Specifics the arrangement of data on the cards.
2. Specifics the type of conversion and scale factor

required for each n111ncrica! dnta field.
3. Provides alphamerical text to be punched into

earrls.
4. Specifies card columns that arc to be skipped.
5. Should specify a maximum of dghty card columns

for ead I ou tpn t record (card).

S<'t> Format Specification.

20 Fortran: /401 $pees. ancl 011. Proc.

Print

General Form: PIIINT n., List
n is the statement number of a F OR!>fAT statement
and List is as previously d escribed under Lists of
Quantities.

Examples:

PRINT J, CIIAllT

PIU:<T 2, (A (J), J = l , 10)

T he rmNT statement causes one or mon:> lines of data
to be printed as specified by its list and the FOJl:\ fA T

statement to which it refers. The list specifies storage
locatio11s of numerical output data. The Fon:-.1AT sta te­
ment:

1. Contains a carriage control character that is not
printed (sec Printer Carria~e Control).

2. Specifi<·s the arrangement of data to be printed.
3. Sp ecifics the type of conversion and scale factor

req11irccl for each numerical field.
4. Provides alphamerical text to be printed.

5. Specifics print positions that arc to be skipp<'d.
6. Shoulcl specify a tnnximum of 100 or 132 characters

(exclusive of the carringc control character) d e­
pending on the model 1403 used.

Sec Format SJ)ccificotinn.

Write Output Tape

Ge11era/ Form.: wl\JTE OOTl'VT TAPE i, n, List
i is an unsigned fixed-point co11sta 11l or a fixed-point
variable, 11 is the statement number of a FOR:-.CAT

statement, and List is as described under Lfats of
()uantitics.

Examples:
WIIIT£ OUTl'U'f TAI'!; '1, 30, TOTAI.S

WIII1"LOUTl'UTTAl'EL,30, (A(J), J = I. lO)

The w11rrE OUTPUT T,\l't:: sta tement causes one or more
tape records to be written as spi'cificd by its list a11 cl
the FOn:-.1AT statement to which it refers. Data is writ­
ten in external notation by symbolic tape unit i, when•
i (constant or variable) can range from 1 to 6. The list
specifics storage locations of numerical output <lata.

The FOR:\ I AT statement:

1. SpC'cifies the arrangement of data within tape
records.

2. Specifies the type of conversion and scale factor
required for each numerical data field.

3. Provides alphamcrical text to be w ritten on tape.
4. Spccifil·s d:'ltn fi<'lds that arc to be skipped.

5. Should specify a maximum of 133 characters for
each input tape record. All output tape records
nre 133 characters long. Any record of less than
133 characters is pa<lrlcd with blanks to p roduce
a 133-charactcr tape record.

See Format Spccifi<X1tion.

Read Ta~,e

General Form: READ TAPE i, List
i is an 11nsigned fixed-point constant or a fixed-point
variable, and List is as previously described under
Lists of Quantities.

Examples:
ltf::AO TAPE 2~ AHIIJ\ 'f

HEADTAPF.K, (A(J),J = I , 10)

The Il£AD TAPE statement causes a single tape record
to he read as sp eciflcd by its list (a FOfll\f AT statement
cannot be used). Data is read in internal notation by
symbolic tape unit i, where i (constant or variable)
can range from 1 to 6. Data read by a READ TAPE
statement must have been written previously by a
wmn: TAPE statement. When the list is a single non­
suhscripted array name, the storage space allocated to
the arrny must be exactly equal to the tape record
length. vVhen the list contains multiple names or sub­
scripted array names, the storage space allocated must
not exceed that specified by the list of the wmTE TAPE
statement that produced the tape record.

Sec Input/ Output Option for further information
on HEAD TAPE statements.

W rite Tape

General Form: WRITE TAl'E i, List
i is an unsigned fixed-point constant or a fixed-point
variable, and List is as previously described under
Lists of Quantities.

Examples:
\VHITE TAPE 4, AllRAY

W111TE TAPE K , (A (J) , J = 1, 10)

The WRITE TAPE statement causes a single tape record
to he written as specified by its list (a FOHMAT state ­
ment cannot be used) . This statement is frequently
used for temporary bulk storage of data, particularly
f1rrays. Data is written in internal notation by symbolic
tape unit i, where i (constant or variable) can range
from 1 to 6. The length of the tape record is deter­
mined by the list.

When the list is a single non-subscripted array
name, the maximum length of the record is restricted
only by available storage space. The record length
must not be less than 13 characters, because this is
co11sidercd to be a noise record.

When the list contains multiple names or sub­
scripted array names, the record length must not
exceed 233 characters. There is no minimum record
length, because an intermediate storage a rea is blank­
filled to produce a 233-character tape record. Note
that array nmnes must be subscripted when they
appear in a multiple-name list.

See Input/ Output Option for further information
on wmTE TAPE statements.

End File

General Form: END FILE i
i is an unsigned fixed-point constant or a fixed-point
variable.

Examples:
ENU flL£ 6
1-; Nll F JLl!: K

The END flLE statement causes a tape mark to be writ­
ten by symbolic-tape-unit i.

Rewind

General Form: REWIND i
i is an unsigned fixed-point constant or a fixed-point
variable.

Examples:
H£WlND 3

ru:;:wJND K

The REWIKD statement causes symbolic-tape-unit i to
be rewound.

Backspcice

General Form: llACKSPACE i
i is an unsigned fixed-point constant or a fixed-point
variable.

Examples:

llACKSPAC£ 5

B,\CKSPACE K

The BACKSPACE statement causes symbolic-tape-unit i
to backspace one physical record. Note that more
than one physical record can be produced by a wntTF.
OUTPUT TAPE statement, thereby requiring more than
one BACKSPACE operation.

Specification Statements

The final class of 1401 Fortran statement consists of
the two specification statements: DIME NSION and
EQUH'ALE:S:CE. These are non-executable statements
that control and minimize storage allocation.

Dimension

General Form: DIMENSION v, v, v, .. .
Each v is the name of an array, subscripted with
one or two unsigned fixed-point constants. Any num­
ber of v's may be given.

Example:

DIMENSIOI': A (10), B (5, 15) , CVAL (3, 4)

21

The DIMENSION statement provides the information
necessary to allocate array storage in the object pro­
gram.

Each variable that appears in subscripted form in a
program must appear in a DIMENSION statement of that
program. The u1:o-1ENSJON statement must precede the
first appearance of that variable. The Dt}.lENSION state­
ment lists the maximum dimensions of arrays. Tn the
object program, references to these arrays can never
exceed the specified dimensions.

In the example given, B is a 2-dimcnsional array
for which the subscripts never exceed 5 and 15. The
DIMENSION statement, therefore, causes 75 (5 X 15)
storage words to be set aside for the array B.

A single Dl'-·IENSION statement can specify the dimen­
sions of any number of arrays.

Symbolic tape unit numbers must not appear in a
u 1Mt:Ns10:--i statement.
Equivalence

General Form:

EQL'IVALENC:E (a, b, c, .. .J, (d, e, f, .. .J, . , . a, b, c,
d, e, f, . .. can each be a non-subscripted variable,
or a variable with a single integer subscript.

Example:
EQUIVALENCE (A, B (I), C (5)), (D (17), E (3))

The EQUIVALENCE statement affects core-storage assign­
ment to thz object program by indicating that two or
more variables are to be assigned to the same core­
storage location. Each pair of parentheses in the state­
ment list encloses the names of the variables that are
to be stored in the same location during execution of
the object program.

Any number of equivalences (pairs of parentheses)
can be used in a statement, and any number of vari­
able names can be used within an equivalence. How­
ever, the names within the equivalence must be either
all fixed-point or all floating-point, unless the floating­
point size, plus two, equals the fixed-point size
(f + 2 = k).

Arrays: An equivalence involving elements of two or
more arrays completely defines the relative locations
of these arrays. In the preceding example, the equiv­
alence (D (17), E (3)) implies that D (15) and E
(1) share the same location. If a nonsubscripted ar­
ray name is given, the subscript is assumed to be 1.
In the example, assuming A is an array name, A (1)
shares core storage with B (1) and C (5).

. To incl~1de an element of a two-dimensional array
111 an eqmvalence, specify its position in the stored se­
quence of clements of that array. Suppose that Dis an
array defined in the following statement:

DI:-VIENSIO'.\I D (4, 5) ,

If D (3,2) is to share a core-storage location with the

22 Fortran, 1401 Specs. ancl Op. Proc.

variable E, D (7) must appear with E in au equiva­
lence, because D (3, 2) is the seventh element of the
array D. See Arrangements of Arrays in Storage.

Simple Variables: If a nonsubscripted variable does
not refer to an array and appears in an EQt:IVALENCE

statement, it is treated as a one-dimensional array,
and assigned a location towards the end of core stor­
age. Like an array, it is subject to the following re­
strictions:
L It must not be used to represent symbolic tape­

unit numbers.
2. It must be subscripted when it appears in a mul­

tiple-name list of a READ TAPE or WRITE TAPE

statement.

Input. Output Option
The user can choose the input-output format routine
or designate that no format routine bt· included i11 the
object program, depending 011 the type of input and
output statements required by the program. If an l/0
format ro11tine is required, the user may choose eith<.'r
(l) the full 1/0 format ro11tinc or (2) the limit<.'d 1/0
format ro11tine or (3) the full format routine plus the
A-conversion format routine. (See Control Card.)

The full format routine occupies about 2600 posi­
tions of core storage and is capable of executing all
types of input and output statements (as described
under Input-Output Statements) . The full format rou­
tine plus the A-conversion format occupy about 2900
positions of core storage.

The limited format routine occupies 300 positions of
core storage, and is capable of executing only the
READ TAP£ and wnnE TAl'E instructions of the follow­
ing form:

wmTE TAP!:.:;, nrray1, array~, ... , arruyJ

Note; Only dtmt-nsiont·d vMinbks can bl' specified in the list.

Each array is written on tape unit i as a single phy­
sical record, therefore these lists are not subject to the
same length requirements as the lists of the ordinary
READ TAPE and ',VRITE TAPE statements (see Read Tape
and Write Tape under Iriput-Output Statements).

Hccorcls written by WAITE TAPE statements used with
the limited format routine may be read by READ TAPE

statements used with the full format routine, if the
lists satisfy the restrictions of the full format routine
as described under Read Tape and Write Tape.
Note: Only dime nsioned variables cnn be specified in the list.

If the limited format routine can be used, instead
of the foll format routine, a considerable amount of
extra storage can be saved for use in computation

(because the full format routine rcq11ircs 2500 posi­
tions and the limited format routi11e only 300 posi­
tions) .

.1\lote: The i11put-011tp111 option also applies to the individual
scgtlu'fltS nf H sc-gmc-ntc d p rogr an1 . as though «.:ud1 scguH.:nt
wcrC' :l sc-p:1rnte program. Sf'C' Pro{:'.ram J,inkag,}.

Program Linkage

The user may want to !ink two or more programs to­
gether for continuous processing; or if a program is
too large to flt into core storage, an<l therefore broken
into segments, he may wanl to link the segments for
continuous processing. 1401 Fortran provides such a
faci lity for linking programs or program segments.
(For the following explanation, the word se~111c11t is
used in a general S<'nsc to rder to hoth programs and
program s0gmcnts that arc to be linked with other
programs or program segments.)

22

1401 Fortran includes a linkage statement (see
Linkage Statement) that causes:

l. the clearing of only a specified area of core storage
for the next segment to be read, therefore allowing
certain processed data from a segment to be pre­
served, in core storage, when the next segment is
read in for execution

2. the reading of t he next segment into core storage
for execution.

Segments arc compiled separately. The compiled
segments can be read, for execution, from cards, tape,
or both cards and tape (sec Preparing the Condensed
Card Decks for Exectttion under Running Programs
Containing Linkage Routine).

When any compiled segments are to be read from
tape, the user loads those segments with title cards
to identify each segment (see Title Cards) on a tape,
referred to as a library (LIB) tape. Segments are
loaded on the LIB tape using Utility Deck Three
(phase 95 of the 1401 Fortran compiler). In the load­
ing process, Utility Deck Three fast supplies and loads
a monitor program on the LIB tape. The monitor pro­
gram makes it possible to find and correct errors in
segments without rewriting the LIB tape and to
change the order in which segments are read from
the LIB tape for execution. Sec Monitor Program.

For each segment, the user also has the input-output
format-routine option described under Input-Output
Option. Therefore, depending on the type of input and
output statments required in a particular segment,
the user can specify either the full or limited 1/0
format routine, or no format routine if no input and
output statements are required. If the limited format
routine can be used, instead of the full format routine,
a considerable amount of core storage can be saved
for computation in that particular program segment.

Nate: The linkage statement allows the user to keep the
processed data from one segment in core storage, while reading
in the next segment. This enahlcs the user to eliminat" the
input and output statements that otherwise would have been
r~qnire<l to write or punch out the processed data while the
next segment is read in, and to read in that data for use in the
new segment.

Linkage Statement

General Form: a = XLINKF(m). a represents a fixed­
or floating-point variable-name that is either non­
subscripted or subscripted with a single variable.
The name a designates the location in array storage
from which core storage is cleared before reading
in the next segment. m represents a constant or non­
subscripted fixed-point variable whose magnitude

must be _...., 999999. The contents of the field desig­
nated by m specifies the location of the next seg­
ment.

Examples:

AUUMMY(2000) = XLINKF(2)
MATRIX(!) = XLINKF(M)

The linkage statement is unique to 1401 Fortran.
Although it is in the form of an arithmetic statement,
it does not perform an arithmetic operation. It is
a control statement that supplies information to a
linkage routine that dcterm~nes the location of the
next segment to be executed, clears a specified area
of core storage, and reads the next segment into core
storage for execution.

Note: Every segment loaded on the LIB tape must <.:ontain
a linkage statement.

Preservation of Array Storage

The variable-name a designates the position in array
storage from which the linkage routine clears storage
before reading in the next segment (see Location of
Next Segment).

1. If a is nonsubscripted or subscripted with a con­
stant, the linkage routine clears storage from the
position preceding the fast position of array storage
down through position 700. Therefore, all array
storage is saved for the next ,;cgmcnt. For example :
1(3) =-= XLINKF(Yl) and A = XLINKF(M) both
will result in all of array storage being saved.

2. If a is subscripted with a variable, the linkage
routine clears core storage from the position pre­
ceding the array represented by a down through
position 700. Therefore, the portion of array storage
from the array represented by a to the end of array
storage is saved for the next segment. For example:
A(I) = XLINKF(M) results in the portion of array
storage from the beginning of the array A(l), A(2),
. .. , A(i) to the end of array storage being saved,
regardless of the present value of the variable I.

a. may he a two-dimensional array, but must be
given a single subscript if core storage preceding
the array a. is to be cleared. For example, if B is a
two-dimensional array, both B(I) = XLINKF(M)
and B(J) = XLINKF(M) result in core storage pre­
ceding B(l, 1) being cleared.

Array Storage

The DIMF.NSION statement provides the compiler with
the information necessary to allocate storage for arrays
of variables. Each different variable name that is sub­
scripted must appear (with its largest possible sub­
script) in a DIMENSION statement. Each variable in a

23

DIMENSION statement represents an array to the com­
piler, and the number of clements in the array is deter­
mined by the subscript. For example, if the variable
A(2) were specified in a mMEKSION statement, A(1)
and A (2) make up the corresponding array that woul<l
be allocated storage. See Arrangements of Arrays in
Storage for more examples of arrays.

The order in which the compiler takes arrays for
storage depcn<ls on two factors:

1. the order in which the DIMENSION statements appear
in the source program and

2. the order in which the subsei-ipted variables appear
in the DIMENSION statement.

Note: The individual elements of each array arc stored as
described under Arrangements of Arrays in Storage.

In the following example, Order refers to the order
in which the DIMENSION statements arc read into core
storage:

Order

l

2
3

Statements

DIMENSION MATRIX (3, 4), VECTOR(3}
DIMENSION A(2), B(2), C(l}
DIMENSION ARC(S), ANS(7)

The resulting array storage is as follows, with ARG(l)
being assigned the low address, VECTOR(3) the high
address, and the remaining variables being assigned
addresses between them in the order specified:

ARC(1), ARC(2), ... , ARG(S), ANS(l), ANS(2), .. . , ANS(7),
A(l), A(2), B(l), B(2), C, MATRIX(l,1), MATRIX(2,l),
MATRIX(3,l}, MATlUX(l,2), ... , MATRIX(l,3), . .. ,
MATRIX(l,4), . .. , MATRIX(3,4), VECTOR(!), VECTOR(2),
VECTOR(3) .

Notes on Array Storage

1. If arrays are to be saved from one segment to the
next:
a. They must be the last arrays specified in the

DIMENSION statement if only one DIMENSION

statement is used.
b. If more than one DIMENSION statement is used,

the DIMENSION statement(s) denning the addi­
tional arrays should occur after the DIMENSION

statement defining the arrays to be saved.

2. The saved arrays from the previous segment may be
given different variable-names in the current seg­
ment, as 1011g as the size and mode (fixed-point or
floating-point) of each array remains the same. The
same area for both fixed-point and floating-point
arrays may he reserved only if the fixed-point pre­
cision equals the floating-point precision plus two,
that is, k = f + 2.

24 Fortran: 1401 Specs. and Op. Proc.

3. EQUIVALENCE statements containing elements of ar­
rays affect the allocation of array storage for those
elements. See EQUIV ALEN CE for an explanation
and example.

4. Simple variables are not saved from one segment
to another, however, they may be saved by includ­
ing them in array storage by:

a. defining them as a single-element array in a
DTMENS10:-. statement, or

b. including them in an EQUIVALENCE statement.

Location of Next Segment
The subscript m specifies whether the next segment is
to be taken from cards or tape and which segment on
tape if tape is designated, or whether control is to
pass to the monitor program.

1. If m = 0, the next segment will be taken from
cards. Any unread data cards that precede the next
segment are ignored. The following examples cause
the next segment to be read from cards:

A= XLINKF (0)
A= XLINKF (M), where the contents

of the field designated by M is zero.

2. If m >0, the next segment will be taken from tape.
In this case the value of m must be a segment
number (sec Title Cards) to identify the segment.
The following examples cause segment three to be
taken from tape:

A = XLIJ','KF (3)
A = XLINKF(M), where the field de­

signated by M contains 3.

3. If m <0, control will pass to the monitor program.
(Sec Monitor Program.) The following examples
cause control to pass to the monitor program:

A = XLINKF (- 1)
A= XLINKF (M), where the field designated by
M contains -1.

Title Cards
Each program segment to be written on the LIB tape
mmt have a title card to give the segment a number.
The format of the title card is as follows:

Columns Contents

8-10 LIB
12-17 Proii;rnm segment number

The program segment number may be any number
the user wishes, however, it must be six digits long.
Therefore if the program number is 17, columns 12-17
must contain 000017, respectively.

The Monitor Program
If segments are to be executed from tape or both cards

and tape, Utility Deck Three (phase 95) is used to
load the appropriate segments on tape. Before Utility
Deck Three loads segments on tape, it first supplies

and loads a monitor program. The tape that contains

the monitor program and segments is referred to as a

LIB (library) tape. ([f the segments are to be executed
only from cards, Utility Deck Three is not used and,

therdorc the monitor program is not supplied.)

The monitor program has three main functions:

l. It initially gets the program into operation by de­
termining the location of the first segment and
reading it into core storage for execution.

2. Between segments it can provide the user with a
core-storage dump of the segment just executed.

3. It provides the user with the facility to change the
order in which segments arc normally executed.
(Thal order was determined by the linkage state­
ments in each of the segments.)

In each case the monitor program requires informa­
tion from a special control card, called a call card.
Call c·ards arc only used with the monitor program.
The format of a call card is as follows:

Card
Colum,is Contents

1-4 Either the lett,·r
C followed by n
three-digit mn­
chine address
or blanks.

8-10 LIB

12-17 Either n six-digit
segment number
or blanks.

19-24 Either a six-digit
segment number
or blanks.

Explanation

The letter C followed by the three­
<ligit machine address specifies that
core storage is to be cle:ired from
the three•<ligit address down
through position 700 before the
next segment, specified by columns
12-17, is read in for execution.
Blanks indicate that no core stor­
(tge is to be cleared before the next
segment is rend in.

LIB identifies the cnr<l.

A segm<Jnt number specilles which
si-gmcnt on tape is to be read in
next for execution. Blanks indicate
the next segment is to be read
from cards.

The contents of this field is stored
nnd usod for comparing against
subsequent segments to be read
from tape. When a match is made
with the number of a subsequent
segment, the monitor program is
cnlled instead of th1: segment.

Note: The word first c.m be substituted for the word next in
each of the explanations jf the monitor program is determining
tl1e location of nnd rending the first segment.

Initialize Operation

The procedure for running a program that has any
segments on tape is such that the monitor program is
always read into core storage first. In this case the first
card in the reader should be a call card, because the
monitor program reads cards until it flnds a call card.
Therefore, any cards preceding the call card are ig­
nored and the information from them is lost. The moni­
tor program checks columns 12-17 of the call card to
determine the location of the first segment. The con­
tents of columns 19-24 is stored. If a C followed by a
three-digit machine address is in columns 1-4, the
monitor program will clear the storage specified be­
fore reading in the first segment.

Using the Monitor Program Between Segments

The monitor program can also be called betvvcen pro­
gram segments to provide a core-storage dump of the
last segment executed, change the order in which
segments arc executed, or both. In each case, as in the
case of determining the first segment, the user must
provide a call card for the monitor program to read.

The linkage statement of a segment calls for the
monitor program when the Reid designated by the
variable m contains either:

1. a negative number, or

2. a number that equals the segment number stored
from columns 19•24 of the last call card that was
read.

Note: The last call card that was rca<l wouhl he the initial
call cnrd if the monitor program was not previously called.

After the monitor program is called, the linkage
routine reads the monitor program into core storage.
The monitor program will give a core-storage dump
of the segment just executed if (1) the field designated
by m in the linkage statement contains a negative
nwnbcr and sense switch G is on, or (2) the contents
of the field designated by m matches the segment
number stored from columns 19-24 of the last call card
that was read. The user can suppress the core-storage
dump only if the monitor program is called because
the field designated by m contains a negative number
and sense switch G is off.

After the core-storage dump (if any), the monitor
program reads cards until it finds a call card. Data
from cards preceding the call card is ignored. The
monitor program stores the contents of columns 19-24
of the new call card to replace the stored contents of
columns 19•24 of the previous call card. The monitor
program then reads columns 12-17 of the new call
card to determine the location of the next segment. If

25

columns 1-4 contains a C followed by a three-digit ma­
chine address, the monitor program clears the core
storage specified before reading in the next segment
for execution.

The stored contents of columns 19-24 of the new
call card will later be compared against the contents
of the field d esignated by the variable min subsequent
linkage statements u ntil the monitor program is again
called and anoth<'r call card is read.

The faci lity to call the monitor program enables
the user to find errors in n segment on the LIB tape,
and later when rerunning the program enter the cor­
rected segment, without rewriting the LIB tape . The
core-storage dump the monitor program provides can
he used to find errors in a segment by calling the
monitor program to provide the dump after the seg­
ment is executed. The core-storage dump is provided
after the linkage statement is executed, therefore a
portion of core storage has been cleared leaving only
tl1e saved ru-rays and the monitor p rogram. Then, after
correcting the errors and obtaining the corrected
condensed card deck, the user can call the monitor
program just b efore the segment in error on the LIB
tape is read and can specify in the call card (that the
monitor p rogram will read) that the next segment is to
be taken from car<ls.

The Processor Program
The 1401 Fortran processor program (compiJer) tran­
slates the source program and compiles the object
program. The user, however, must supply certain in­
formation in a control card used by the processor pro­
gram.

Included in this section is a description of the con­
trol card and tl1e logical flow of the processor program.

Control Card

It is necessary for a control card (PARAM) to precede
the first card of the source program or program seg­
ment to communicate the following information to the
compiler:

1. Core storage size. This specification (a three-char­
acter 1401 address) must be equal tu or less than
the core storage size of both the compiler machine
and any object machine on which the object pro­
gram is to be executed . If it is less than either ma­
chine size, that part of core storage beyond the
specified address is unaffected during both com­
pilation and execution.

2. The modulus (k} or word-size for the values of
fixed-point (integer} variables in the object pro­
gram.

26 Fortran: 1401 Specs. a11i/. Op. Proc.

3. T he mantissa length (f) for the values of Roating­
point variables in the object program. Because of
the two-position characteristic on the right, the
word-size for floating-point variables is f + 2.

4. Whether or not a self-loading, condensed object
program deck is to be punched following compila­
tion.

5. Whe ther ur not a snapshot of the generated pro­
gram in core storage (not including the arithmetic
and format [1/ 0] routines) is to be printed follow­
ing compilation .

6. Whether or not 1401 Fortran is being compiled on
the 1410 in the 1401 compatabiHty mode.

7. Whether or not an input/output format routine
other than the ordinary format routine is to be
included in the object program.

Columns Function

1-,'5 PAflAM - this field identifies the l'ontrol c,ucl.

6-8 The machi11c lnnguai,:c for the highest core storage
address (END) to be u,ed by the compiler and object
program. These arc nonnally tho physical limits; e.g.,
T9Z for 8,000 positions of core storage available, 19R
for 12,000 positions, and 191 for 16,000 positions.

9- 10 The fixed-point modulus (k)

hb (blank) means k = 5
01, the minimum, means k = l
02 mcnns k = 2

. . . .
20, the maximum, means k = 20

J 1-12 The J\oatin!(point mantissa length (f)
bb (hlnnk) means f - 8
02, tho minimum, moans f = 2
03 means f = 3

20, the ma~imum, means £ = 20

13 P, if conclcnsccl deck i.~ desired; blank if not
14 S, if storage snapshot is desired; hlank if not
15 T, if processing on the mM 1410 in the 1401 compati­

bility mode
16 X, if no formal routine is desired

L, if the limited format routine (nEAn TAl'E, WlllT E

TAPE operations only) is desired
b (blank), if the ordinary format routine is to be used
A, if the A-conversion format routin~ is to be added
to the ordinary format routine. The A must be
punched for A-conversion to operate correctly.

Logical Flow of the Processor

Snapshot Phase (00)

1. Sets word marks for constants.

2. Loads snapshot routine into positions 333-680 of
core storage. (This routine performs n core-storage
dump of a specified amount of c.;ore storage.) It
remains there throughout compilation.

System M onitor (01)

1. Brings in next phase from system tape or initiates
reading of next phase from cards, depending on
whether the compiler is being used as card or tape
system.

2. Clears previous phase to insure that no group-mark
word-mark characters exist in the compiler area
of storage when operating as a tape system.

Note•: Tl,c monitor exists in storage throughout compilation.
Whc•n a phase has completed its function, it transfers con­
trol back to the monitor.

Loader Phase (02)

l. Stores the informntion of tl1c control card (PARAM).
2. Checks that the storage sizo indicated on the con­

trol card docs not exceed the machine storage ca­
pacity, unless T is punched in column 15.

3. Stores the source program beginning at the address
indicated on the control card. The wurce program
is stored backwards to exploit the 1401 machine
instructions that cause address registers to decre­
ment during the scanning of the source program.
Appended on the right of each statement is the
statement number (if any), a one-character position
which will become the statement-type code, and
three positions for the internal sequence number.

1. Eliminates all non-significant blanks from the input
statement while storing it. Blanks arc retained only
in the II-conversion part of FOR~!AT statements.

5. Checks that there are not more than nine continu­
ation cards.

6. Checks for input statement characters (11-3-8
punch) or (4-8 punch), except in the H-conversion
part of FOR~lAT statements. The former, if present,
is changed to *(11-4-8 punch), the latter to - (11
punch). A record mark is treated as an end-of-card
character.

7. Each statement is bounded by group-mark word­
marks. The appe11dage is separated from the main
body of the statement by a 5-8 punch character.

8. A !>TOP is generated as the last statement.

Scanner Phase (03)

1. Determines the statement type and inserts the code
in the appendage of each statement.

2. Supplies a sequence number to each statement.

Sort Phase One (04)

Determines if there is enough free storage remaining
to expand each statement by three characters. If not,
the compilation ends. A message is printed indicating
that the object program is too large.

Sort Phase Two (OS)

Statements of the same type arc chained. Each state­
ment expand.~ by three characters to contain the ad­
dress of the next statement of the same type.

Sort Phase Three (06)

The source program is sorted by statement type. At
thr end of the sort, the sourc:e program has been
sl1ifted to the leftmost part of available storage.

Insert Group-Mark Phase (07)

The 5-8-punch which separates the main ho<ly of the
statement from its appendage is replaced by a group­
mark word-mark.

Squeeze Phase (08)

1. The words which defined the type of statement are
eliminated, shrinking the source program. For ex­
ample, the word dimension in DIMl:NSIOK statements
is squeezed out.

2. Statements tl1at do not begin with legal statement­
rldlning words arc noted on the printer and are
eliminated from the source program.

Dimension Phase One (09)

A table of arrays is generated a t the end of storage.
Each table clement consists of the array name, its di­
mensions and sufficient space for control statements
and data generated by the equivalence phases and by
u1MENs10N Phase Two.

Equivalence Phase One (10)

l. Assures all arrays present in EQUIVALENCE state­
ments arc defined.

2. Adds simple variables present in EQUIVALENCE

statements to the table of arrays generated by the
previous phase. These variables arc treated, in ef­
fect, as one-element arrays.

Equivalence Phase Two (11)

The dimension table is alterecl to show the relation­
ship between arrays. The procedure, essentially, is to
make every array whose first element is equivalent to
a secondary element of another array know the dis­
tance to the first clement of the latter array.

Dimension Phase Two (12)

Arrays arc assigned their object-time addresses.

Variables Phase One (1 3)
The source program is scanned for variables. Simple
variables are merely tagged for later processing by
Variables Phase Four. Subscripted variables whose

27

subscripts are constants arc replaced by the object­
time address of the array element. Subscripted vari­
ables whose subscripts arc variable arc re-placed by
the computation required at object time to determine
the array clement selected. on-subscripted array
variables appearing in lists :1re replaced by two ma­
chine-lnnguage addresses representing the limits of
the array. Non-subscripted array variables appearing
elsewhere are replaced by the address of the first ele­
ment of the array.

Variables Phase Two (14)

The entire source program is shifted to the top (left­
most part) of available storage, leaving room for sub­
sequent compiler phases. The remaining storage is
cleared for tables including the array table generated
by Dimension Phase Two.

Variables Phase Three {15)

This phase docs housekeeping for Variablc-s Phase
Four.

Variables Phase Four (16)

The compiler first scans input-output lists and the
left side of equal signs for simple variables. E ach
unique variable is placed in a table with its object­
time address. l n the second scan of this phase, all vari­
ables are matched against the table. \.Yhen an entry is
found, the object-time address is substituted in the
statement for the variable name. Variable names not
present in the table arc undefined.

Variables Phase Five (17)

A chock is made for unreferenced variables.

Constants Phase One (18)

Constants in the source program arc noted and nor­
malized and/ or truncated.

Constants Phase Two (19)

Same as Variables Phase Two. The table of simple
variables is destroyed.

Constants Phase Three (20)

Constants are placed in their object-time locations at
the lower end of storage. The object-time addresses
replace the constants wherever they appear.

Subscripts Phase (21)

Subscripts which must be computed at object time
are reduced to the required parameters.

28 Fortran: J40l Specs. a11cl 011. Proc.

Statement Numbers Phase One (22)

A 11 statt·mcnt numbers that appear in the source pro­
gram arc reduced to a unique three-character repre­
sentation. Statcmc-nt numbers within the statement
arc moved to the beginning of each sourn·-program
statement (rigl,tmost end of statement in storage) that
contains these cll'ments.

Tamrof Phase One (23)

voa:-.-tAT statements arc checked to i11st1re that they
arc referenced by input-011tp11t statements.

Tamrof Phase Two (24)

The object-time formnt strings are developed and
stored irnmcdiatdy prccedi11g the constants at t·he
lower (rightmost) end of storage.

Lists Phase One (25)

Duplicate lists nre checked and eliminated to optimize
~toragt· at object time.

lists Phase Two (26)

The object-time list strings arc developed and stored
immediately to the left of the format strings at the
lower end of storage.

l ists Phase Three (27)

Each inp11l-outp11t sh1tement is reduced to the ad­
dress of the list string (when present); the format
string (when prt•sent); and the tape unit number
(where applicable).

Statement Numbers Phase Two (28)

Same as Variables Phase Two.

Statement Numbers Phase Three (29)

The three-character equivalents of statement numbers
nppearing witl1in statements (generated by Statement
. umbers Phase One) are placed in a table.

Statement Numbers Phase Four (30)

The three-character equivalents of statement numbers
whieh identify statements is rnatched against the state­
ment number table. When the equivalent is found , the
sequence number generated by the compiler for that
statement is substituted in the table. Unreferenced
and multi-defined statement numbers are checked.

Statement Numbers Phase Five (31)

Undefined statement numbers are noted.

Input/ Output Phase One (32)

The linkage to the object format routine from the
input-output statements is generated in-line.

Arith Phase One (l3)

This is a housekeeping phase. The unary minus (negate)
and exponentiation operators are changed to unique
one-character symhols. Error checking also takes
place.

Arith Phase Two (34)

All arilhm~tic and IF statements arc unncstc<l using
a forcing table technique. Error checking continues.

Arith Phase Three (35)

Initialization for Ari th Phase Four takes place.

Arith Phase Four (36)

Strings generated by Arith Phase Two arc optimi,c<l
to reduce the number of temporary storage areas for
each statement.

Arith Phase Five (37)

w statement exits and strings for exponentiation are
created.

Arith Phase Six (38)

Optimization of temporary storage areas takes place.
These areas arc assigned definite locations in storage.

Input/ Output Phase Two (39)

In-line instructions are generated for executing 1£;-;o

FJLl::, REWIND and BACKSP;\CF. statements.

Computed Go To Phase (40)

Statements with two to ten exits generate in-line in­
structions.

Go To Phase (41)

An unconditional unANCH instruction is gcncratc<l
in-line in place of the original statement.

Stop/ Pause Phase (42)

The proper instructions to

1. H ALT

2. halt, continue, and display the number indicated
arc generated in-line.

Sense Light Phase (43)

In-line instrnctions arc generated.

If (Hardware) Phase (~•4)

ln-line instructions arc generated for 1F (sr,:,"sE SWITOI

i) and lF (SEl\'SE LICHT i).

Continue Phase (45)

No object-time instructions arc generated for these
statements. This phase passes information required by
the Resort phases of the compiler.

DO Phase (46)

Strings of unconditional DHA1'CII instrnctions and pa­
rameters are generated in-line. An unconditional
BRA;-;r.11 is generated to follow the last statement within
the range of the oo.

Resort Phase 1 (47)

An area is made available for a table to assist in re­
sorting the statements into their original order .

Resort Phase 2 (48)

The resort table is filled with the current location of
eac-h statement.

Resort Phase 3 (49)

The source program is resorted back to it~ original
order. The statement number table is altered to show
the current address of each statement.

Resort Phase 4 (SOA)

The statements arc relocated to the positions they will
occupy at object time. The statement number table is
adjusted to show the object time locations of the
statements.

Shift Constants, Formats, and Lists (SOB)

Constants, formats, and list strings arc moved into
their object core-storage locations above array stor­
age. Anay storage-area is cleared.

Replace Phase One (51)

Objcct-timo instrucl'ions which reference statement
numbers are corrected to the object-time addresses of
the statement. Subscripts strings arc cleaned up.

Load Phase (52) - Sections B and C (52A)

As the object coding may originate a t 1697, the coding
for phase 52 must be split into two parts, the first of
which replaces the sn:-ipshot cocli11g in positions 333-
680. This phase loads the two sections.

2fJ

Function/ Subroutine Loader Phase (528 and 52C)

Relocatable function routines and subroutines arc
loaded. A table of the starting addresses of these rou­
tines is created.

Relocatable Package (53)

The relocatable routines loaded in 52B and 52C con­
stitute phase 53A of the c:ompiler.

Reloading Snapshot (53R)

The snapshot coding which was replaced by 52B is
retained. lf a snapshot is requested for phases 52 and
53, it is taken at this point.

Snapshot (535)

Same as snapshot in phase 00.

Format Package Loader Phase (54A)

This phase selects the proper I/0 routine and loads
it into its object core-storage location.

Objei;t Time Limited 1/0 Format (548)

This is the limited 1/ 0 routine loaded by 54A.

Object Time Format (54C)

This is the regular 1/0 routine.

Object Time A Format (54D)

This is the A-format routine.

Replace Phase 2 (55)
Addresses of the fixc<l• and floating-word work-areas
arc inserted into the generated object progra m. In­
structions which branch to the relocatable routines
are corrected to show the object core-storage addresses
of these routines. Unused core storage is cleared.

Snapshot Phase (56)

A snapshot of the generated program is printed if
requested (if there were no source program errors
which would make program execution unrewarding).

Condensed Deck Phase One (57)

When requested (if there arn no input errors), the
compiler will punch a self-loading card deck. The
deck is listed on the printer if sense switch B is on.
This phase punches only the clear-storage and boot­
strap cards.

30 Fortran: 1401 Specs. and 011. Proc.

Condensed Deck Phase Two (58)

This phase punches the cards that will initialize the
index registers and sense lights, the snapshot or the
linkage routine, the arithmetic routine, and certa in
fixed aJdrcsscs and constants.

Copy of Snapshot Routine (59A)

This is the object-time snapshot coding loaded by 58.

Fixed XLINK Routine (598)

This is the object-time linkage routine.

Arithmetic Operations (S9C)

This is the object-time arithmetic routine.

Condensed Deck Phase Three (60)

This phase punches the generated instructions, the
constants, .lists and format strings, and the i format
routine.

Geaux Phase One (61)

This phase prints the end of compilation message,
initializes the sense lights, and prepares the branch
into the object program coding.

Geaux Phase Two (62)

The arithmetic routine is loaded. Communication is
established between that routine and the generated
c..•oding. The index registers are initialized.

Arithmetic Package (63)

This phase is comprised of the arithmetic routine
which is loaded by Gcaux Phase Two.

Arithmetic Operations
The fixed- and floating-point arithmetic operations
necessary for the execution of tl1c compiled program
are pcrformc<1 by an arithmetic routine which always
appears in every compiled Fortran program. It con­
tains a monitor routine which interprets the string
of operand addresses and codes for operations which
is compiled as a part of the procedure for every arith­
metic expression in the source program. It also contains
the various subroutines to accomplish the basic opera­
tions of add, subtract, multiply, and divide for both
fixed-point and floating-point numbers, and a routine
to normali7.e floating-point results.

In addition, the monitor routine will, when a func•
tion code in the string is encountered, initiate a trans­
fer of control to one of the various function routines.
These are referred to collectively as the rdocatablc
functions, nnd arc individually and selectively loaded
by the compiler as required.

The arithmetic routine will also transfer control to
a subscript routine, which will calculate the proper
operand nddress when the string indicates the presence
in the expression of a subscrip ted variable in which
at least one of the subscripts includes a variable.

Arithmetic Routine

Any expression compiled in the proced ure involves
one or more groups of serial simple arithmetic or
function evaluation operations, each terminated by a
sto1·e of the result at a location specified in the string.

The result of a single arithmetic or function evalu­
ation operation (within a group) is stored in a working
accumulator (sec below). If the result is the terminal
value of a group of operations, it will then be moved
to a temporary storage area, whose address, together
with the "store·• operator code appears in its string,
associated with that group. If the result i11 the work­
ing accumulator is the terminal value of the entire
expression (i. c., tm-minal value of the final group in
the expression) it will then be moved to the final
storage location, also obtained from the compiled
string. This location is the address assigned to the
variab le on the left of the equal sign in an arithmetic
statement, and is an available temporary area if the
expression appeared in an IF statement.

The working accumulator is used to store the partial
result during the course of a group of operations. This
location and other work areas necessary to arithmetic
operations occupy the arithmetic work area, core stor­
age positions 200-332. The working mantissa precision
during a floating-point expression evaluation is f + 2
positions, providing 2 extra positions beyond the
floating-point precision specified. This provision serves
to improve the accuracy of the calculated value of the
expression. For fixed-point calculations the working
precision is k positions.

The working-ac.:cumulator mantissa is thus f + 2
positions in length (Boating point), or k positions
(fixed point), having its leftmost digit a t symbolic
address ACCHI + 1. Its clw.ractoristic (Ooating point
only) is stored in a three-character location whose
rightmost position has the symbolic name EXP.

The size and format of the temporary storage loca­
tions are the same as those of somce program vari­
ables, except that the mantissa is f + 2, (not f) digits
long. The two digits of the characteristic make the
total length f + 4 positions. Temporary storage areas
for fixed point values arc k digi ts long.

During the calculation of an expression, all partial
results arc truncated to the f + 2 digits available in
the working accumulator and in the temporary stor­
age. The final value of the expression, however, is

rnunded in the f + l position before it is stored
to f digits of precision in final storage. Also, any output
value is rounded one position to the righ t of the last
position output. In fixed point, all results and output
quantities arc taken as the integral part of the trnc
result, modulo 10k.

The floating-point add, subtract, multipl)' and divide
subroutines arc designed to handle one operand (the
working accumulator) of f + 2 digits of precision, and
one operand of f + 2 or fetcer digits of precision. The
latter operand may be either a variable (f digits), a
temporary location (f + 2 digits), or a soul'ce program
constant. Such constants arc stored hy the compiler
only to the precision to which they are written in the
source program statement, up to the precision given
on the control card.

The analogous fixed-point routines handle one oper­
a nd (the working accumulator) of k digits of precision,
and one operand of k digits or less, again allowing
for the possible smaller prcci~ion of source program
constants.

The hasic subroutines in the arithmetic routine are
tabulated as follows:

Symbolic
Name

ARITF

FSIZE

None

FMPY
FDIV

NMLZI

XSIZE

None

XMPY

XDIV
STROO

STRZE

DVERR

QFUNCT
EHMSG

CLRWK

l'urJ)ose

Entry point from prm.:nlurc; monitor ,md interpret
string
Iuili:ilize for a llo:it ing-point calculation

Floating-point add/ subt ract

floating-point multiply

Floating-point <livid-,

.Normali~<' float i11g-point result of a single arithmetic
operation; pl;ice the normalized result in the work­
ing accumulator. Jf cx1ionent overflow is detected,
go to ERMSC to print mess.ige (:\'OF); then go to
STR99. If expon<'nt undC'rllow is dctGCted, go to
STRZF ..

Initialize for ,\ fixe<l-p(lint calculation.

Fixed-point add / subtrad

FLxed-puint multiply

Fix<.'cl-point divide.
Expom·11t overllow; set re,nlt magnitude equal to
l:irgcst value possible in Oonting-puint notation; set
,·c.,ult ~ii.:n :is appropriat<-. Go to CLTIWK.

1-:xponent underllow, or result e1111als zero; set
floating-point rrs11lt equal lo zero. Go to CLHWK.
Division by zero; go to l::HMSC to print message
(DZ!::); thC'n go tu STH99.
Linkage to relocatnblc function transfer control.
Print approprintc error me~sagcs, which includes
a mnemonic thrcc-cha:actcr code and the di~play
addrc,s in the i.:encrated procedure of the sour<'c
proi.:rnm statem<•nt bcin;: executed. This subroutine
is 11s,•cl to record certain drcumstnncl'S, occurring
durini: arithmetic opcr;1tion.s, which may affect the
caknlal ions acl\'c-rscly.
Clear tlw work area after au imlividual arithmetic
opcrntion. Return to monitor.

31

Accuracy

In what follows, the terms absolute error and relative
error will be used, and are defined as follows:

The absolute error in the calculation of a function
g(x, y} of two arguments x and y (c. g., for addition,
g (x, y) = x + y) is equal to: c-alculatcd g (x, y) - exact
g (x, y).

The relative error is equal to: (calculated g (x, y)­
exact g (x, y)) --c-- exact g (x, y).

Add/ Subtract. When two numbers of like sign arc
added, or unlike sign subtracted, the absolute value
of the relative error in the result is less tlian 10 -c r + 1 >.

When two numbers of unlike sign are added, or like
sign subtracted, the absolute value of the absolute
error in the result is less than 10 -ct+ 21 ·l·e, where c is
the larger of the characteristics of the two numbers.
The reJatjve error can be as high as 10.

Multiply. The absolute value of the relative error
in the product is less than 10 - < 1 .,_ 1 >.

Divide. The absolute value of the relative error in
the quotient is less than 10 - (' + 1 >.

The error limits above do not apply if exponent
overffow or underflow occurs. This will be detected
<luring normalization of the result. For overflow, con­
trol is transferred to ERMSG, where the c.:oclc NOF
and the statement address arc printed , and then to
STR99. For 11nderflow, control is transferred to STRZE.

Relocatable Function (Library) Routines

A number of relocatable routines designed to find a
specific function of an argument y arc included in
the Fortran system deck, and are selected by the
compiler for inclusion in the object program in ac­
cordance with the need for each evidenced by the
source program. Some of these routines may he expli•
citly invoked by the programmer through the use of the
function name assigned to the routine. Some arc im­
plicitly invoked by the programmer through the use
of certain types of arithmetic expressions; for instance,
a sub-expression of the form A **B requires both the
exponential routine a nd the logarithm routine for
evaluation. Figure 5 tabulates each of these functions,
and exhibits the function name available to the pro•
grammer (if any). Also shown are the arithmetic mean­
ing of the fonction, the correct mode of the argument
and the mode of the calculated function (for those
functions which are named) and the operator code,
used in the generated procedure string, which at object
time indicates to the arithmetic routine that control
is to be transferred to that particular function routine.

32 Fortran: 140! Specs. and Op. Proc.

Computation Method

The functions square root, exponential, sine, cosine, arc
tangent and natural logarithm are computed during
cvnlualion of an arithmetic expression wherever codes
for those operations arc encountered in tl1e compiled
sering of addresses and operators corresponding to the
source progrmn expression. Control is passed to the
proper function evaluation routine with the mantissa
and exponent of the floating-point argumen t in fixed
locations. Return from the function routine to the
arithmetic routine occurs in various ways, for instance:

l. control is returned to NMLZl for normalization of
the function vnlue.

2. the value of the argument is found to be such that
the result is known, for instance:

a. cos(x) = l if x = 0; control is r eturn<'d to the
routine which will store + l as the result.

b. cxp(x) is greater than or equal to 1onn; control is
returned to the exponent overflow routine, e tc.

The square-root function is computed by the odd·
integer me thod. The result is calculated from left to
right beginning with the most significant digit of the
argument.

The basic computation for the exponential, sine,
cosine, arc tangent and natural lognrithm functions is
an evaluation of the appropriate power series, in
which the last term used depends upon the precision
to which floating-point arithmetic is to be done. The
same series evaluation routine is used for all of the
functions, although it is used to compute a slightly
different series for arc tangent and logarithm than for
the other three functions. The routine is initialized by

M ndeof P,·ocedure
Ftmclion Meariing Name Argument Function Code

fa-pon<'ntial cxp(y) EXPfi' Floatin)(J<loatin!{ E
Sine sin(y) SI F Floating Floatin)(s
Cosine co.~(y) COSF Floating Floating C
Arctangent tan · l(y) ATANF Flonting Floating T
Natural ln(y) LOC F Flontin)(Floating G
lognrithm
Float flont a FLOATF Fixc<l Floating F

fixed
nnmhcr

Fix F ix a XFIXF
float

Floating Fixe::tl X

number
Ahsulutc Absolute ABSf Floating Floatin!(A
value value of y
Ahsolutc Absoluk XABSF Fixed fiX(.'d A
value value of y

Negate - y :\J
Square root ,/y SQHTF Flonting Floating Q

Figure 5. mM 140[Fortran Functions

the function main line routine to give the proper result.
Figure 6 exliibits the series used and shows the in­
itialization quantities necessary to produce the dif­
ferent functions.

The power series routine is written to accept argu­
ments of the form:

X · 10 -r
where r ~ 0, and the maguitude of X is such that
neither the series (partial sum or final sum) nor any
of its terms equals or exceeds 10.

F11nctiu11 uf Argument = S(arl!)

For EXP, SIN, COS:

S(nrg) =, ~ 10 - ai T ,
, =O

Wlu~rc: arg = X, 10 • r

For LOG:

S(nrg} = I 10 -ni T,
, = 0 D,

Whrrc: arg = X

T' = h (X) T I - l T I = h(X) TI - l

D ,
D, = D , •l + c, D , =- D , - , + C,
C, = C,., + 13 C, = C, - I + J3

lnitinliz.ition: EXP SIN cos LOG

To X l (X - 1)
X + l

3 r 2r 2r 0

h(X) X -X' - x• G; D·
D. 0 0 0 1

C. l -2 - 6 2

D 0 8 8 0

Thus,

for EXP: S(a rg} == 1 + X . 10 ·-r " X2 - 10 -Zr + ...
21

:a e.~p(a rg)

for SIN: S(arg:) =: X - Kl , 1() -Zr + X>·l0-4r - , ..
31 5!

=-= l 0r sin(arg)

for COS: S(arg) == 1 - xz.10 -2, -'- X4. 10 4, -
21 4!

== cos(arg)

for ATAN: S(arg) == X - Xl + X5 - ...
3 5

== c :!: tau - I (arg)

ATA.

X

2r

- x•

l

2

0

for LOG: S(nrg) ==(~ - 1)-'- 1 · (X - l)l .,. l(X - l)S ·I ...
\X + l 3 X + l SX+ l

== 1 log(arg) + r,ln 10
2

Figure 6 . Function Evaluation

To meet these conditions, a quantity for which the sine,
cosine, or exponential function is to be found may
require a reduction in magnitude. This is accom­
plished by the main line routines for the functions,
and has the following mathematical basis:

for cxponcntinl: exp (y) ::. 1Qq cxp(x)

whe re: y = q 111 10 + x

For sine: if y = n !!"+ x

q integral; I x I < In 10

n integral; I x i < "!! ,
2

then: sin(y) == sin(x)
~in (y) = cos (x)

sin (y) == - sin (x)

sin (y) = - cos(x)

For cwinc: if y == n :l!" + x
2

then: cos(y) = cos(x)
co.,(y) == - sin(x)

cos(y) = - co,(x)

cos(y) == sin(x)

For nrc tangt,nl :

2
II = 0,4,8,, ,
n: I, 5, 9 . . .
n == 2, 6, l O .. .
n ::: 3, 7,ll .. .

n integral; x I < .'.!!:
2

II ::- 0, 4, 8 , . ,
n == l, 5, 0 .. .
n =: 2, 6, 10 .. .
n = 3, 7, J L .. .

if y < 0, tan -I ()') = - tan - I (I y I)

if y :2::_ l, tan -I (y) = ~ - tan - 1 (-0
then if O ~ y < • 42, tan I (y) = S(arg), where X = y

if . 42 < y < 1, tan - 1 (y) == - S(arg),

where X

the result will be such t\1al: I tan· ' (y) I<!!
2

The necessary reductions are thus accomplished when
necessary by a division routine so programmed as to
obtain an integral quotient and remainder. For ex­
ponential, the divisor is l.!! 10; for sine or cosine it
is 'E .

2
For logarilhm:

if y = x · 10• .31 S x < 3.1 ; c integral

then
ln(y) = e,ln 10 + In x

Both the series evaluation (CALC) and the division
routine (DTVID) arc dosed subroutines contained in
a relocatable program called FORTRA I FU:\ICTION
COMMON DECK. It is made a part of the compiled
program only if one or more of the four functions
(exponentiaJ, sine/ cosine, arc tangent and logarithm)
is included in the compiled program.

The task of determining the magnitude of the argu­
ment of the function and of using the COMMON rou­
tines (if necessary to obtain the function value) is left

33

to the individual function main line routines. There
are four such routines, since sine and cosine are evalu­
ated by using two different entry points to the same
routine. When the routines are entered, the mantissa
of the argument y is located in the working accumula­
tor whose leftmost position has the symbolic name
ACCHI+l and whose length is f + 2 positions. The
characteristic of the argument is located in a thrcc­
c.:haracter location whose rightmost position has the
symbolic name EXP.

Accuracy

In what follows, the terms ahsolute error and relative
error will be used and arc defined as foUows:

The absolute error in the calculation of a function
g(y) of an argument y is equal to: calculated g(y)
-exact g(y).

T he relative error is equal to: (calculated g(y) -
exact g(y)) -+- exact g(y).

The error specifications refer to the normalized
function value stored in the working accumulator.

Exponential Function. For 0 _s; I y I < In 10, the ab­
solute value of the relative error in exp(y) is less than
2 X 10 -u + ••.

For In 10 L y < 99•ln 10, and for - lO0•ln 10 .,,,.
y ~ - ln 10, the absolute value of the relative error
in ex-p(y) is less than:

(q + 2) · l0 -11 + 1>

where q is the integral quotient obtained when y is
divided by In 10.

For y < - 100-ln 10, exp (y) < 10 100• Thus, the
value of the function is too small lo be stored in float­
ing-point notation, a circumstance which is known as
exponent underflow. In this case, the value of the
function is set equal to zero and the program proceeds
to the next calculation.

For y? 99-ln 10, exp(y) ~ 1099• The value of the
function is too large to be stored and the exponent
overflow routine is invoked. One of two error messages
is printed, either NOF (normalize overflow) or EOF
(exponential overflow), since the condition will be de­
tected in either the normalization routine (if y < 100
In 10) or the main line exponential routine (if y _2:: lOO·ln
10). In either case, the display nddress of the state­
ment being executed is also printed, the result man­
tissa is set equal to a field of nines (positive), the result
characteristic is set to + 99, and the program proceeds
to the next calculation.

Sine F11nction. For O _:::; I y ! S ~, the absolute value
2

of the 1·elalive error in sin(y) is less than 2 · 10 -r.

34 Fortr<m: 1401 Specs. a11d Op. Proc.

For angles whose absolute values lie in quadrants
other than the first, the absolute value of the absolute
error in sin(y) is less than :

((} + 2) . 10 -(f + I)

where q is the integral number of quadrants i11 the
angle (obtained by taking the integral part of the
product y · _g_). The upper bound on the relative

7f

error in these qundrnnts is equal to this quantity di­
vided by sin(y), and can be very large when I y I is
close ton -rr • n = 1, 2, 3, ...

For I y I > 10r, no attempt is made to cakHlatc the
sine. The error message SCL (sine-cosine large) is
printed together with the clisplny address of the state­
ment being executed, the function is set equal to zero,
and the program proceeds to the next calculation.

Cosine Function. For O ..<::: I y I < 1, the absolute
value of the relative error in cos(y) is less than
4. lQ -(f + I).

For l _:s; ! y ! < '!!. - .04 = 1.53, the absolute value
2

of the relative error in cos(y) is less than 5 · 10 -r.

For 1.53 ::; i y I < .!. , the absolute value of the ab-
2

solute error in cos(y) is less than 2 · 10 -< 1 -"- 1 >, and
for angles in quadrants other than the first, the upper
limit of this absolute error is:

(q+2)• 10 -<f+l l

where q is defined ns for the sine routine. The upper
bound on the relative error in these quadrants, and
near ,._ in the firs t quadrant, is equal lo this quantity

2
divided by cos(y), and can be very large when I y ! is
close to (2n - 1) . 7f" , n = 1, 2, 3, . ..

2

For i y I > 10' no attempt is made to calculate the
cosine. The error message and procedure (set function
equal to zero) is the same as the procedure for the
analagous circumstance in the sine routine.

Arc Tangent Function. For arguments less than
10 - (f t 3) in absolute value, the absolute value of

the relative error is less than 10 -er ,. 1> .

For arguments less than .42 in absolute value, the
absolute value of the absolute error is less than .5 ·
10 - (f -1- I>.

For arguments greater than .42 in absolute value,
the absolute value of tl1e absolute error is less than
3.0 " 10 - (f + I) •

For arguments greater than 10 (f t 3) in absolute

value, the absoh1tc value of the absolute error is !(1ss
than 10 -o + I) .

Logarithm Function. For 0 < y < 0.5 and for 2
< y, the absolute value of the relative error in ln(y)
is less than 3.5 · 10-t.

For 0.5 < y < 0.95 and for 1.05 < y < 2, the ab­
solute value of the relative error in In (y) is less than
18 . 10-1•

For 0.95 < y < 1.05, the absolute value of the
absolute en·or in ln(y) is less than 0.5 · 10 -1• The upper
bound on the relative error in this range is equal to
this quantity divided by ln(y), and can get very large
as y approaches 1.

If y-0, the error message L~Z is pr inted togetlacr
with the display address of the statement being exe­
cuted, the function is set equal to the largest negative
number in the floating-point range, and the program
proceeds to the next calculation.

If y <0, the error message is LNN and the function
calc.:ulatcd is In I y j.

Square Root Function. For O ~ y < 1009 , the ab­
solute value of the relative error in SQRT (y) is less
than 10 -er ·'· 1 >.

If y is negative, the error message SQN is printed
along with the display address of the statement being
executed. The square root of the absolute value of y
is calculated. and the program proceeds.

Input I Output Operations

Input/ output operations necessary to the execution of
the compiled program are performed by the FORMAT

routine.

Format Routine

For each Input-Output statement, an entry to the
Format Routine is compiled. Following this appears:

1. a code indicating the appropriate 1/ 0 device;
2. the address of the series of instructions (format

string) which determines the arrangement of the
data (compiled from the referenct-'<.l format state­
ment); and

3. the address of the specified list of data (list string).

The format string consists of:

1. branches to appropriate closed subroutines of the
Format: Routine,

2. parameters dcsc1ibing the data which arc needed
by these subroutines,

3. the data itself (II-conversion fields), and
4. certain register-updating instructions.

When an item of rnm1erical data is called for by the
format statement, (GETAD), control temporarily
transfers to a list routine, OBLIST (a relocatable and
selectively loaded object time subroutine), which sup­
plies the address required by processing the list string.
The data is then converted to the appropriate internal
(INEFI) or external (EFNTN, INOTN) notation by a
Format Routine subroutine.

The fl-conversion subroutine (IIOLLR) is divided
into two sections. On output, !I-conversion transfers
alphameric information from the format specification
to the output area. On input, H-conversion (IIOLIN)
transfers alphame1ic data from the input area to the
proper loca tion in the format specification.

Logic Flow

I. Initialization: Work areas and index registers arc
initialized. Counters and switches arc reset.

2. Select 1/ 0 routine: Test the coJe indicating the
appropriate J/ 0 <ltJvice and branch to the corre­
sponding subroutine. (Read a card , punch, print,
read input tape, write output tape, write tape, read
tape.)

3. 1/ 0 Routines: The input 1/ 0 routines bring in the
data and place it in the work area. Control is then
transferred to the format specification and the return
address is saved. The output routines clear the out­
put area, branch to the format specification and
save the return address.

4. Control: Processing is now under control of the
format string. This series of instructions branches
to appropriate closed subroutines in the Format
Houtinc. The subroutines necessary to process For­
mat specifications are:

a. OPNPR: 1. A branch to OPNPR occurs for
each left parenthesis.

2. The OPNPR routine sets up a
counter indicating number of times
this set of parentheses should be
executed. (This number was found
as a parameter in the format speci­
fication).

3. Sets the address of the first exe­
cutable item following the open
parenthesis.

b. CLSPR: 1. A branch to CLSPR occurs for each
right parenthesis except the last.

2. Adjusts counter set up in OPNPR
and determines whether it has been
satisncd. If not, control returns to
last open parenthesis. If satisfied,
control proceeds to next executable
instruction in format string.

35

c. EOJl: (The rightmost close parenthesis is
translated as a branch to EOJl)
1. For output, data is transferred (via

NOLIN) to the I/0 unit previously
specified. If the list has not been
exhausted, control is sent back to
the last open parenthesis and its
coefficient; otnerwise, control is re­
turned to the generated in-line pro­
cedure.

2. For input, the list is checked first.
If the list is exhausted, an exit from
the format routine to the procedure
occurs. Otherwise, control is trans­
ferred to the I/ O subroutine, more
<lata is read into the work area, and
control returns to the last open
parenthesis.

<l. NOLIN: l. A branch to NDLIN occurs upon
encountering a slash (/) in the for­
mat specification.

2. Resets address of I/O work area to
left end position (thereby spacing
a line).

3. Branches to 1/0 subroutine and
either puts out or brings in data.

e. SCALE: 1. A branch to SCALE occurs when
the format specification indicates a
scale factor.

2. The SCALE subroutine saves the
scaling factor for subsequent proc­
essing of E- and F-conversion data.

f. GETW: 1. A branch to GETW occurs for each
E, F, or I specification in the for­
mat statement.

2. Transfers control temporarily to
OBLIST for the purposP. of obtain­
ing the a<ldress of the data to be
processed.

3. Upon return, transfers control to
INEFI, for input data.

g. TNOTN: Processes I-conversion data for out­
put statements, including when
necessary, the insertion of a lead­
ing minus sign, space permitting.

h. EFOlJT: l. Processes E- and F-eonversion out­
put data.

2. Adjusts characteristic of internal
data for scaling.

3. Moves data to output area, inserts
sign if necessary, positions decimal

36 Fortra ,i: l 401 Specs. arid Op. l'roc.

point and adds E nn as last 4 posi­
tions of data for E-type conversion.

i. 1;-,,:Efl: 1. D etermines from the format speci-
fication the location of rightmost
character of E, F, or I input data
within the work area.

2. Scans for first significant digit of
data.

3. Branches to I 11 for I-conversion
input data.

4. E and F Input data are converted
to internal notation and the char­
acteristic adjusted as required by
a scaling factor and/ or decimal
point position.

5. Transfers converted data to storage
as specified by the LIST address.

j. INI: 1. Processes I-conversion input data.

2. Converts data lo internal notation.
3. Transfers converted data to storage

as specified by lhe list address.

Performance Data

The time required to process a 1401 Fortran program
is <lctcrmincd by the following factors:

l. Overhead. This involves the time necessary to read
and pass through the phases of the compiler. The
time required :

a. for a card system: 2 minutes 56 seconds
b. for a tap e system: 16 seconds.

(The time difference is because the compiler can
be read faster from tape.}

2. Input/ Output Operations. This involves the need
to read the source-program deck, print a core•
storage snapshot (<lump), and punch the condensed
deck.

3. Resorting. This involves the time needed to re­
order the statements into their final core-storage
locations after processing is completed. This time
is the most significant part of compilation time,
particularly when :

a. there are a large number of different types of
statements, and

b. core storage is completely filled.

4. Number of Input Characters (size of the source
program). Compilation time varies directly with
the number of input characters.

Minimum and Maximum Compilation Time

The time required to compile a 1401 Fortran program
varies from:

1. 16 seconds to 15 minutes for a tape system (i.e.,
where the compiler is on tape), and

2. 2 minutes 56 seconds to li minutes 45 seconds for a
card system i.e., where the compiler is read from
cards. (The difference is that information can be
read faster from tape than from cards.)

The minimum program in this case consists of a
single control statement. The suggested maximum
program is one that:

l. involves the use of every type of Fortran statement.
2. fills core storage (16000 positions in this case). This

would require 400 statements, assuming an average
length of 25 charnctcrs per statement.

Examples

The following three cases arc presented as examples:

Numher of Compilation r.ore-Stvrage
Case Input Statements '.l'ime Po.,ilions Used

I 42 52 secs. 7,996
2 25 l min. 50 secs. 7,352
3 424 10 min. 35 S~CS, 15,856

Case 1 (sec F igure 8) is a matrix calculation. Case 2
(see Figure 9) illustrates a use of the library functions.
Case 3 calculates characteristics of sort programs.

Input/output operations and sorting and resorting
of statements require the most significant part of com­
pilation time. For example, input/output operations
required approximately:

I. 32 seconds in Case I (includes snapshot).

2. 1 minute 26 seconds in Case 2 (includes snapshot
and condensed <leek).

3. 4 minutes 35 seconds in Case 3.

In Case 3, more than half of the remaining 6 minutes
was used to sort and resort.

37

Fortran Operating Procedures-IBM 1401

This section contafos the information necessary to
compile and execute an object program from a source
progr:tm written in 1401 Fortran. Included also arc
the diagnostics, halts, and messages that may be en­
countered when compiling :incl executing the object
program.

Compiling Operation Procedures

Library Tape

The 1401 fortrnn system on tape, consists of a self­
loading program, blocked printer records, and blocked
condensed car<l records. You may retrieve the data
from the tape through the following procedme:

1. Heady the tape on Tape Unit l.

2. Set the 1/ 0 check stop switch up.

3. Reset the system.

4. Press Tape Load. A program halt will occur at 364.

5. a. If the symbolic listing is desired, press Start. At
the end of the listing a program halt will occur
at 600. If condensed cards arc then desired, press
Start. Otherwise, press Start Reset, then Start to
rewind the tape.

b. If only co11de11serl cards arc desired, press Start
Hesct, then Start. The tape will be searched past
the symbolic listing rc1.,-ords and then commence
punching. After punching is completed, an auto­
matic tape rewind occurs.

The cards which are produced by this operation con­
stitute the 1401 Fortran Compiler Deck, Utility Deck
3, Utility Deck 2, the two sample problems, and Utility
Deck 1 (the compiler tape generator). The decks may
then be used as described below.

Compiler Deck Description

The <leeks comprising the 1401 Fortran system arc
identified as such by 50 in columns 76 and 77. The
version number is punched in column 80. Phase nrnn­
bers punched in columns 78 and 79 identify the func­
tional segments of the system. From an operational
point of view, it is only necessary to locale the follow­
ing phase boundaries in the <leek:

1. The end of phase 02, the loader.

38 Fortran: 1401 S))ccs. and o,,. Proc.

2. The beginning of phase 95, Utili ty Deck 3, the
library tape generator.

3. The beginning of phase 96 (optional, on request),
Utili ty Deck 2, the relocatable condensor deck.

4. The beginning of phase 97, sample problem 1
(matrix arithmetic).

5. The beginning of phase 98, sample problem 2 (trigo­
nometric, logarithmic, exponential, and square root
functions).

6. The beginning of phase 99, Utility Deck 1, the com-
piler tape generator.

Phases 00-63 are continuously numbered (with gaps be­
t ... veen some phases) in columns 72-75 and constitute
the compiler deck. Set the rest aside. Phases 95-99 are
each continuously numbered in columns 74-75.

Addition of Arbitrary Relocatable l ibrary Functions

This section describes the procedures to follow in:

1. assembling the user's 1401 Autocoder function rou­
tines

2. including the additional function names in the 1401
Fortran function table, and

3. including the user's assembled ftmc tion routine in
the 1401 Fortran compiler. Sec User Functions.

Assembling the User's Fundion Routines

The user's function routines arc assembled using the
1401 Autococler (on tape) processor and procedures.
No con<lcnsccl output need be specified in the control
card. If there are no errors:

l. Place the 1401 Fortran Utility Deck 2 (phase 96) jn
the 1402 card-read hopper.

2. Press the 1402 load key.

3. Press the start key when the reader stops at the last
card.

A condensed deck without clear-storage and boot­
strap cards will be produced from the data on the
Autocoder tape. Thi~ condensed deck will be suitably
zoned so that it can be relocated and loaded when it
is named in the source program.

Incorporating fhe User's Function info 1401 Fortran

To incorporate the new function into the 1401 Fortran
system, the user must:

l. add the name of the function to the table of valid
library functions, and

2. insert the relocatable condensed deck into the sys­
tem deck.

To add the function name :

1. consult the 1401 Fortran listing, Phase 33 {Arith
Phase One), under the comment card TABLE OF
FORTRAN FUNCTIONS.

2. commencing at the statement bearing the remark
"USER FUNCTIONS", note the column of codes,
II, D, M, L, K, etc.

3. choose an unassigned code and note its condenscJ
card number along with tl1e value of ,1 in its com­
ment USER FUNCTION n.

4. pull the indicated card from tho system deck and
find the first unassigned code punch. It will be pre­
ceded by 8 blanks.

5. in this blank field , if the name has 7 characters, a
left parenthesis must be punched, followed by the
characters of the name, IN REVERSE ORDER,
commencing with F.

For a six-character function name, the left paren­
thesis is preceded by one blank. A five-character
function name has its left parenthesis preceded by
two blanks. A four-character function name, the
minimum, has three blanks preceding the left paren­
thesis.

6. restore the card to the same position in the system
deck.

'fo insert the condensed, relocatable deck in the sys­
tem deck:

1. List phase 53 of the condensed compiler deck to
find the series of cards with the comment USER
FUNCTION n GOES HERE in columns 1-25.

2. Note the condensed card number of the comment
containing the value of n selected in phase 33.

3. Pull that card ancl the one following from the sys­
tem condensed deck and replace them by the con­
densed relocatable deck.

4. Generate a new system tape, if desired.

Compiling Procedure

Note: Progr11m segments arc assembled as though each were
a separate program.

As a card system:

1. Pince source program deck, preceded by an appro­
priate control card, between phase 02 and phase 03
of the Fortran compiler deck in the 1402 read
hopper.

2. Set sense switch A up. Set all other sense switches
down.

3. Set sense switch B up, if the condensed <leek is to
be listed on printer.

4. Reset the machine.
5. Press Load on the 1402.

6. Press Start when the reader stops at the last card.
When the end-of-compilation message prints (see
Compiler Out17ut) the compiler deck (with inserted
source deck) and the condensed object deck (if any)
will be in the 1402 stackers.

As a tape system to generate the compiler tape:

1. Place phase 99, the compiler tape generator at tho
front of the compiler condensed deck in the 1402
read hopper.

2. Ready an unprotected tape on Ta pe Unit 1.

3. Set sense switch A up. Set all other sense switches
down.

4. Reset the machine.
5. Press Load on the 1402.

6. Press Start when the reader stops at the last card.
The following message will be printed:
1401 FORTRAN COMPILER GENERATED
ON TU!

7. File-protect the compiler tape.

Once the compiler tape is generated, the compiler
deck may be filed.

To run the tape system:

1. Ready the compiler tape on Tape Unit 1.
2. Set sense switch A up. Set all other sense switches

down.

3. Set sense switch B up, if the condensed deck is to
be listed on the printer.

4. Reset the machine.

5. Press Tape Load.

6. Place the source program in the 1402 read hopper,
preceded by appropriate control card.

7. Press Start. Press Start again when reader stops
at the last card. When the end-of-compilation mes­
sage prints (see Compiler Output), the compiler
tape will rewind, and the source deck and con­
densed object deck (if any) will be in the 1402
stackers.

39

Compiler Output

The following information is obtained, during com­
pilation, at the 1403 printer unless otherwise indicated:

1. Machine core-storage size, specified and actual.

2. The source program listing including an internal
sequence (SEQ) number for each statement. SEQ
will be referenced by any error diagnosis at either
compile or execute time. Each page listed will be
identified by the punches in columns 76-80 of the
source program cards and by a page number.

3. The number of input characters.

4. The specified modulus (k), equal to the word size,
for fixed point (integer) variables.

5. The specified mantissa length (f) for floating point
variables. Two extra positions will be reserved for
the characteristic. Word size thus equals f + 2.

6. Array storage assignment, naming each array with
its decimal and machine language boundaries.

7. Simple variable storage assignment, naming each
variable with its decimal and machine language
(right-hand) address.

8. Constant storage assignment boundaries.

9. Diagnostic messages. See Compiler Diagnostics.
10. For each executable statement: the S.EQ number,

the object time starting address (machine language
and decimal) of the generated procedure, and a
display code (related to the starting address) which
may be used during diagnosis of execution of the
object program (see next section).

11. If requested on the control card, and if there have
been no errors that would prevent successful exe­
cution of the object program, a core storage snap­
shot will be printed and a condensed deck in con­
densed Autocoder format, will be p unched. The
condensed deck listing will be printed if sense
switch B is up.

12. The system will halt after printing the message:
END OF COMPILATION

PRESS START TO GO
At this time data tapes and cards may be loaded
and the system tape unloaded. Initial object-time
sense-switch settings may be made.

Compilation Checking Aid

Tho core storage snapshot can be forced at various
times during compilation by the use of sense switches.
Switches C, D, and E all up will cause the snapshot to
print after every compiler phase. Because this is usu­
ally undesirable, fewer phases can be printed by the
use of switches D and E up. These are: DIMEN2,
VARBL5, CONST3, LIST3, STNUM5, ARITH6, DO,
RESOHT 4.

40 Fortran: 1401 S7JCCS. and Op. Proc.

Sense Switch E up will cause printout DIMEN2,
STNUM5, DO.

G on will cause a halt after any snapshot. F on will
bypass the printout of any snapshot.

Compiler Diagnostics

The following messages will he printed, <luring com­
pilation, when appropriate:

MACHINE SIZE SP£CIFIED IS CREATE!\ TH~ ACTUAL
1-IACHINE

SYSTEM DOES NOT FOLLOW END CARD

OBJECT PROGRAM TOO LARGE

NO PARAMETER CARD (Control Car<l)

EirnOR L UNDETERMINABLF. STATEMENT (SEQ
number)

ERROR 2 DOUDLY DEFINED All RAY (NAM~:)
ERROR 3 DIMENSION SYNTAX, STATEMENT (SEQ

number)

ERROR 4 EQU[VALE:'liCC: SYNTAX, STATEMENT (SEQ
number)

ERROR 5 ILLEGAL MIXI C IN EQUIVALEl\CE,
STATEMENT (SEQ number)

ERROR 6 U 'DEFINED ARRAY, STATF.1-IENT (SEQ
number) (NAME)

ERROR 7 ILLEGAL EQUIVALENCE, STATF.MEi\T
(SEQ number)

ERROH 8 REDUNDANT E(,.)UIVALENCE, STATEMENT
(SEQ number)

ERROR 9 VARIABLE SY!\iTAX, STATEMENT (SEQ
numher)

ERROR 10 UNDEFINED VARIABLE, STATEMENT (SEQ
number)

E RROR 11 UNREFERENCED VARIABLE, STATEME T
(SEQ number)

ERROR 12 FLOATING POINT SUilSCRIPT, STATEMENT
(SEQ number)

ERROR 13 STATEMENT l'<vMBER SY!\TAX,
STAT EMENT (SEQ number)

ERROR 14 Ui\:REFERI::NC£0 FORi\fAT, STATEMENT
(SEQ number)

ERROR 15 FOllMAT SYl':TAX, STATD1ENT (SEQ
number)

ERROR 10 PARENTHESIS ERHOH, STATEMENT
(SEQ number)

ERROR 17 DOUDLY DEFINED FOHMAT, STATEMENT
(SEQ numher)

ERHOR 18 LIST SYNTAX, STATEMENT (SEQ number)
EHHOR 19 UNREFERENCED STATEMENT !\UMBER,

STATEME T (SEQ numb<:r)
ERJ\OR 20 DOUBLY DEFINED STATEMENT NUMDEH,

STATEMENT (SEQ number)
E RHOR 21 nnn UNDEFl.1\ED STATEMENT NL'i\lBER(S),

STATEMENT (SEQ number)
r:RJ\OH 22 UNDEFINED FORMAT, STATEMENT

(SEQ number)
ER HOR 23 CODll\G UNINTELLIGIBLE, STATEMENT

(SEQ number)
ERROR 24 SYSTEM ERROR, STATEMENT (SEQ number)
ERROi{ 25 LEFT SIDE INVALID, STATEMENT

(SEQ number)

ERROR 2~ EXCESS OF - SIGl'<S, STATEMENT
(SEQ number)

ERROR 27 ARITHMETIC SY. TAX ERROR, STATEME. "T
(SEQ numb,·r)

ERROR 28 INCORRECT MODE OF FUl\"CTION
ARGUMENT, STATEMENT (SEQ nnmbcr)

ERROR 29 UNDEFINED FUNCTIO:-.l l\"AMl:,
STATEMENT (SEQ number)

ERROR 30 FIX TO FLOAT POWER, STATEME T
(SEQ numht,r)

EHROR 31 DOUBLE OPl-:HATORS, STATEMEI\T
(SEQ number)

ERROR 32 MULTI PLE EXPONENT, STATE:\IENT
(SEQ number)

EHROR 33 NO TAPE UNIT NUMBER, STATEMENT
(SEQ number)

ERROR 34 COMPUTED CO TO SYNTAX, STATEMENT
(SEQ number)

EHHOH 35 HALT NUMBER :-JNNNN TO BE DISPLAYED
AS NNN, STATEMENT (SEQ number)

~:HHOR 36 ILLEGAL SENSE LIGHT, STATEMENT
(SEQ number}

ERROR 37 ILLEGAL SE 1SE SWITC H, STATDIENT
(SEQ number)

ERnon 38 ILLEGAL RANGE OP DO, STATEMENT
(SEQ number)

EHROH 39 ILLEGAL 1ESTI. G, STA'J'E:\1ENT
(SEQ number)

ERROil 40 VO SYNTAX EHROR, STATEMENT (SEQ
number)

ERROH 41 CONSTANT LEFT SID£ OF EQUAL SIGN,
STATEME. T (SEQ number)

ERROR 42 MODULUS

E RROR 43 MANTISSA

ERROR 44 CONSTANT SYNTAX, STATEMENT (SF.Q
numb<'r)

ERROR 45 HOLLEHITII COUNT, STATEMENT (SEQ
numbrr)

ERROR 40 MIXING IN AHITH, STATEME:-.JT (SEQ
numb£•r)

ERROR 47 BAD LIST, STATEMENT (SEQ number)

Compilation Time Halt

When running as a tape system, a halt will occur with
3333 displayed in the B-address register if a permanent
redundancy is detected on the systems tape. Press
Start to reread the record.

Object-Program Storage Allocation

The storage allocation of compiled programs is dia­
grammed in Figure 7.

The following information will be helpful in the
estimation of the size of an object program:

Variable storage wonl-~izc,
including array membe:ers

Temporary storage word-s ize

Floati,ig Fixed

f + 2
f + 4

k
k

The relocatable library and processing subroutines
appear in the object program only if needed.

Name Ap11rox. Size

1. SINF/ COSP 437
2. LOGF (or A *''B) 320
3. EXPF (or A **fl) 297
4. COMMO.'\J (if 1 nr 2 o r 3 auow) 263
5. ATAN1''

6. SQRTF
7. XFlXF (or l = A)
8. FLOATF (or A = I)
9. l'\EGATE (- B~G, etc.)

lO. ABSF/ Xt\DSF (also reC')uin::s
11. DO
12. LIST
13. DOi LIST COMMO1' (if 11
14. SUBSCRIPTS (if variaulc)

t---- ~333

700

------~ 1697

471
210
133
59
8

NEGATE) 7
92

404
or 12 auove) 50

220

2977

Scnso Lights and Index
Locations

Input/ Output ond Arithmetic
Wark Area

Snapshot Program or Linkage
Program (abject time starts
at posit ion 337)

Fixed- and Flooting·Paint
Arithmetic

Input/ Output and Format
Routine

Simple-Variable ond Temporary
Storage

Generated In-Line Procedure

library Functions and
Processing Subroutines

- Unused Storage, if any

END

list and Format Strings

Constants and Generated
Subscripting Parameters

Array Storage

Figure 7. Object Program Storage Allocations

41

The generated in-line procedure, the generated list
and formal slrings, the constants and generated sub­
scripting par::unetcrs, aH togcLhcr generate less tl1an
twice as many object program characters as arc in the
source program.

For examples of typical storage allocation, sec the
sample programs, Figures 8 an<l 9.

Object Program O peration Procedures
The compiled program may he executed immediately
after compilation, while still in core storage, b)' ready­
ing any card or tape problem-data and pressing Stnrt.

Execution of the Condensed Card Deck

To execute the object program at a later time:
l. Ready data tapes, if any.
2. Place the condensed deck in the read hopper.
3. Reset the machine.
4. Set any sense switches required by the source pro-

gram.
5. Press 1402 Load.
6. Press Start when the reader stops at the last carcJ.
7. Place card data, if any, in the read hopper when

required.
Note: Altemativc:ly, card data may be pluced in the hopper

behind the condensed deck at step 2.
When the compiler is u~ed on tape, data c~rds, preceded

by a c:ird containing a 5 and 8 multipunch in column I, may
follow the source program.

Program Checking Aid

At any point <luring execution of the object progmm,
a snapshot of core storage can br. obtained by execut­
ing the snapshot program at position 337. Position
333 of the snapshot routine during compilation is not
available at object time. Sense switch F must be off
or printing will be suppressed. Programs containing
a linkage (XLIN K) statcmc11t do not have this facil­
ity; a transfer of control to 337 causes execution of
the linkage program.

When the snapshot program is executed, positions
84-86 will contain one of the display codes printed
during compilation. The SEQ number corresponding
to this display code identifies the current or most re­
cently executed statement in which an arithmetic ex­
pression appeared.

Object Time Halts or Error Conditions
In addition to the halts generated by STOL' and PAUSE

statements, the object program will contain halts that
are invoked by badly coded or positioned data, or by
unanticipated values, tape errors, or end of file. When
the system halts at object time and the stop light is lit,
display the B-address by pressing the B-address regis­
ter key-light.

42 Furtran: 1401 Specs. and Op. Prac.

One of the following three-digit l1alt co<les may
appear:

Cud£'
581

M,•,mi111(

A pl'nn.tncnt r!':td error was cn<'ounlcrecl on
the LIB tape during t'xcclltion of the linkage
rout int·.

603 (dnrin!!
execution of
linkage routine)
342 (uul'inJ.:
(·xccution of
monitor on the
LIB tape)

The m·cess:iry program segment is uot on the
J .[B tape. Press Start lo grt the st•gmcnl from
tloe card reaclcr.

777

888

999

A t:1pe , ·rror was cm:ounlcred in the limited
input/ untpttl format routine.
End-of- lae was encountered in the limited
input/ output format rout ine.
Head error on the Ll13 t:ipc during execution
of the monitor program on the LIB tape. Re-
wind the Lill tape nnd press TAPE: LOAD to
try executing the monitor program again,
Check to sec if the call card is st ill available
in the rc:tclcr.

One of the following four-digit halt codes may ap­
pear on the register:

Cuc!t.: Mea11i11g

1001 The value of the index in a computed r.o TO state­
ment exceed~ the number of exits.

I 11 I P,trity errors when attempting to read tape, or having
skipped and blanked tape 50 times while attempting
to write tape. Pr.-,s Stnrt to continue the atlt'mpt.

11 21 Data :ind 1·onMAT spccillcations di.,:tgrce in mode or
acceptable ehar:icters. ot all disparity is dctcctahlc.

2002 The value of :t computed suhscript is greater than
15,999.

3700 Output record too long because of incorre<;t vouMAT
spccilll·ations. Sn:ipshot routine has been destroyed.
Press Start to continue execution.

4002 End of file detccted while reading tape. Press Start to
reatl next record (or first rewind and unload old
tape-; load new tape).

4003 E:n<l of file while writing tape. A tape mark will be
writ!t•n, and the tape rewound and unloadc<l. Afte r
new tape is monnted, press Stnrt to proc;-eed.

Note: 1. An X will replace an output data field whenever,
a. a fixcd-poiut vnlnr hns E or F' format, ur
b. insufficient int•c,gcr space hns been allocated to nn

Jo' format value.
2. If an F format value is negative and the numeric

digit, l'X:tctly 1111 the output data llcld, the sign is lost.

A coded message and the display address will be
printed in the leftmost positions of the 1403, in case
of the following errors. There will be no halt. The pro­
gram will continue with the indicated result.
Message Meaning Result

± ~
NOF Exponent overflow during normali1.atiu11 9 ... 999
DZE Attempted to clivicle by zero 9". 999
LNZ Attumpted to find reciprocal of zero

:I: ..
9 ... 999

EOF Expourntial 1on9
-+

9 ... 999
LNZ I .ogarithm of zero 9 ... 999
SCL Sine or Cosine argument too large zero
LNt\ Logarithm of nrgativc number In jargl
ZTZ Zero lo zt:ro power one
SQN Square· rool o f nl.'gativ,· argnnll'nt \f"Targl

Running Programs Containing
Linkage Routine

The following arc tlle procedures for executing a pro­
gram that consists of more than one section or segment.
See Program Linkage.

Preparing the Condensed Decks for Execution

The condensed decks of the compiled segments are
read into storage (for execution) from cards, tape, or
both cards and tape. In the first two cases a single
combined deck is required. fo the last case the con­
densed decks to be read from cards are combined into
a single deck, and those to be read from tape are com­
bined into a single deck that is loaded on tape.

Reading from Cords

In reading the compiled segments from cards, the con­
densed decks of the segments are combined into a
single deck as follows:

1. Remove the dear-storage cards (first two cards)
from all the segments, exc•~pt tl1c first segment of the
program, and any others that require all of core
storage to be cleared before being read for exe­
cution.

2. Place data cards behind each condensed <leek that
requires data.

3. Combine the <leeks (with data cards) into a single
deck, in the order they are to be read.

Reading from Tope

In reading the compiled segments from tape for exe­
cution, the condensed decks must be combined into a
single deck and loaded on tape (LIB tape). The pro­
cedures are as follows:

I. Remove the clear-storage cards (first two cards)
from each segment.

2. Place the associated title card before the condensed
deck of each segment.

3. Combine the condensed decks into a single deck.
They need not be in the order they are to be read
from tape; however, they should be in that order
for efficiency in execution.

4. Load the combined condensed deck on tape using
the following procedure:
a. Place the LIB tape generator (phase 95) in the

reader followed by the combined condensed
deck (with title cards).

b. Ready tape unit 1.
c. Press the load key on the 1402. The LIB tape

generator performs the necessary loading opera­
tion.

Note: Two halts m:iy occur while writini,: the LIB tape.
When a halt oc<.:urs, displny the contents of the B-adclress regis­
ter. A 19.5 in th., B-addrcss register indicat.,s that a title card
was searched for in the rcatler and not found. Put the necessary
title card in the rcatlcr and press START to read more cards.
A 666 in the B-acldress register indicates that the job is
completed.

Executing the Segmented Program

To run the segmented object program:

I. If all segments are to be read from cards:
a. load the 1402 card read-punch with the com­

bined condensed card-decks.
b. press the load key on the 1402. The program is

loaded, and execution begins.

2. If all segments arc to be read from tape:
a. ready the LIB tape on tape unit 1.
b. clear core storage to blanks unless previously

executed routines or data arc to remain. This is
a precaution against errors resulting from extra
group-mark word-marks in core storage.

c. place the initial call card in the card reader. It
should be followed by any card data or call cards
required by the entire program, in the order
they are to be read.

d. Press Tape Load.
c. Turn on sense switch G i£ a core-storage dump is

desired.
f. Press Start to read the initial call card. The first

segment is then read in and execution begins.

3. If segments arc to be read from both cards and
tape, follow the procedure in item 2, also loading
the segments to be read from cards along with the
card data (for segments on tape) and call cards, in
the order they are to be read.

Sample Programs

Figure 8 illustrates a matrix calculation. F igure 9 illus­
trates the use of library functions. In each case a
core-storage snapshot is specified for the printout. The
printout for the second program, however, also in­
cludes a listing of the condenscc.l deck.

43

....
.,.,
C
:t
i':1
?

...
~
"' -::,

~
::,
:,
=>.

~
~

~

~
r.;
C
~

"'
:lC

:::::
g.
()

" r.
C

E"
5·
:,

;?
;:l.

START OF FORTRAN COHPltATl ON

MACHINE S I ZE SPEC IFIED IS 08000
ACT UAL MACH INE SIZE IS 16000

SEQ

1
2
3
4
5
t,
7
8
9

10
11
12
13
14
15
lb
17
18
19
2 0
21
72
23
24
25
26
27
28
29
JO
)I

32
H
)I.

35
36
n
38
)<I

40
41
42

ST MNT

C
C

13

2

15
10

3

4

5

6

II
lb

8
9
18

17

12
7

FORTRA~ S TII. TEHENT

APPENDIX E SAMPLE PROBLEM I
MATR IX AR ITHMETI C
0 l HENS I ON A ! 7 , 7l , VECTOR I 71 , B (7 , 7 l
SENSE LIGHT I
OJ I I • I , 7
DO l J • I, 7
Bll , Jl • l , /FLOA•Fll+J-l l
A(1 , Jl • 8 1 I , J J
PR INT I 3
FORMAT ll5HlHIL8ERT HAT~IX//l
PRINT 2 ,A
FOR MAT(IX ,7E14 . 7)

PRINT 15
FORMAT(8HOINV ERSE//)
OD 6 K= l,7
VECTOR• I .
DO 3 I •? , 7
VECTOR(ll•O.
DO 4 J•2 , R
Al l ,Jl • AI 1,J I/A
OJ 5 l• l, 55
Alll =A! l+ ll
00 b I= I , 6
A(56l •ACl , ll
00 6 J • I, 7
Al I , Jl•AI 1, J • J l-Al56l • AC1,JI
PR IN T 2 ,A
I FCSE'J SE LI GHT ll l l .1 2
Pll.lNT 16
FOR MAT I I SHOMATRIX PROOUCT//1
00 9 K= l .7
00 8 J=l ,7
VECTO~Cll =O.
00 8 J •l , 7
VECTOR C I l =VEC TO;! I I l +A C J , JI • BI J , I(I
PR I NT l ij , VECTOR
FORMAT(lX ,7Fl4 .8 l
PRINT l7
FORMA Tl 15HOT WIC E l~VERTED//l
GO TO 10
PRINT 7
FORM A TC I Hl I
STOP 111
ENO

02509 73 PAGE

....
'-"

"'1
<€"
::;
r.,

?>

a::
~ ;;·
() .,
;:;­
E.
;!
o·
:,

-·:.:-
;:.

""
789 INPUT CHARACTERS

M0DUlUS IS 5
HANT I SSA IS I 5

STOR AGE ASSIGNMENT-ARRAYS • EQUAT ED VARIABLES

B
VECTOR
A

7165-07997
7046-07164
6213-07045

A6V I 9X
+4W A6U
KlT +'-V

STORAGE ASSIGNMENT - S IMPlE VARIABLES

J
I
K

4 284
4289
4294

28U
28Z
29U

CONSTANTS lOC ATEO FROM 06 167 TO 06212 J6X-KlS

~ ::l
O'Q
C

~
;

:l. 9"
:!
~ ~

.... ~
~

;.·
C)

"'
..

"::, g
" ~ ;,

"
5·

:, ::,

R.

STARTI NG ADDRESS OF STATEMENTS

SEQ STARTl~G ADDRESS DISPLAY

002 HU 4314 31Y
003 'HY 4318 32S
004 3<t/ 43',[34V
005 36U 4 364)~ y

006 4 I/ 4411 41V
006 4'.,/ 4451 45V
007 45V 4455 45Z
009 4 6 W 4466 47*
011 47X 4477 48/

~
;:>
::.

"Cl
w

0
fl

Oil 4IIY 4488 49$
014 SI/ 4511 51V
015 52T 4523 52X
0 16 5 4W 4546 55•
016 5611 45b6 57t
017 57* 4570 57U
018 59T 4593 59X
0 18 62V 4625 bZl
01<1 62Z 4629 63T
020 6SS 4 652 65W
020 68t 4680 6AJ
02 1 68U 4684 68Y
022 70X 4 707 71/
on 72X 4 727 73/
024 75* 4750 75U
024 80x 41107 81/
025 81/ 4811 8\V
026 82S 4 822 11211
027 83U 4 8 34 ~lY
029 84V 4845 84Z
030 86Y 4868 8 1S
031 89/ 4891 f<QV

032 91/ 491 l 91V
OH 9)U 4934 HY
033 99Y 4998 t OS
034 • OS 5002 tOW
0)4 HT 5013 till
036 tlX 5017 t 2/
038 t 2Y 5028 OS
03'1 *lS 5032 HW
041 t4T 5 0 43 14 X
04 3 t SS 5052 t5.i

.... .._.

"'I .;;·
C: ...
"'
?>

:::
~
;.·

Cl
"' ?,
C:
;;­
g.
:,

;i,

,I>

SNAPSHOT OF OBJEC T PROGRAM

I NPUT/OUTPUT AR EAS LOCATED fROM 00 1-332

FIXE D OBJECT TIME ROUTINES LOCATEO FROM 333-4279

•••••••• 09 • ••• • ••• 19 •••••••• 29 • •• ••••• 39 •• •••••• 49 • ••• •••• 5 9 • • •• •••• 69 •••• • ••• 79 •••••••• 89 • •• ••••• 99-AREA•J42J3
9 , 26XRHbl0t 4 l2bX8H61 5 0 . 0 X RW4A26l i0tl8A38i0 -~REA-042CO

l I 2 1 I l l I 1 I 11 l 11 1 l l I l 1 11 l ll ll l l 2

• •• ••••• 09 • • •• • ••• 19 •••••••• 29 •••••••• 39 ••• ••• •• 4 9 •••••••• 59 •• • •••• • 69 • • • •• ••• 79 •••••••• 89 •••••• •• 99- A~ EA- 0430)
) 0B l 8t6/8t 8tJ7TJ7SJ8Y28Z4 5V6t6/8 t 8 t J 7TJ7SJ8Y28U32SB7003JT~ 20 l +2QU- J XTF tS+OV28UJ8S28Z J 8-A~EA- 04 300
l I l l l llll I 111111 l l ll l l

•••••••• 09 •• • ••••• l9 ••••••• • 29 •••• • •••)9 •••••• • • 49 • •• ••••• 59 •••••••• 69 • •••• • • • 79 •••••• • • 89 •••••• • • 99-A~EA-04400
US=J7W/31Tt B700S-I T28UJ8S28ZJ8US=S+OV28UJ8S28lJ8USt8/2t 8 W9 7• l4SZ4/8W97• l8tl2V8W97• -lSZ4/8t 6/8 t 8 t J7TJ-ARE A-04400

1 1 11 I l I I I I l t l I L l I L l l ll l I 11 I I I I l

•••••••• 09 •••• •••• 19 ••• •• ••• 29 •••••••• 39 • •• ••• •• 4 9 ••• •••• • 59 ••• ••••• 69 • • •••••• 79 •• • ••••• 89 •••••••• 99-AREA- 04500
7SJ8Y29U81 / o700+FSiJ 7Wt8 t 6/Rt8tJ6YJ 7SJ8Y28Z57t 8700$+0V28l J8US=J 7Z t 8 / 2t8t 6/8t 8tJ6 YJbXJ8Y28U62Z8700SJA - AREA· 04500

t 1 l l l I I l 1 l l I l I l l l l 11 I l l l l l I l 11

• •• ••• •• 09 •• ••• • • • t9 •••••••• 29 ••••••••)9 ••••• • • • 49 •• ••• ••• 59 • • • •• • • • b9 •• • ••• • • 79 • •• • • • •• 89 •••• • • • • 99- A~EA·04b00
t 28UJ8 SS=SJAt28UJ8SS/ KBZ t 8/2t 8 t b/6 t 8 t J7 TJ7 tJ8Y28Z68UB700SKAS28Z J 8US=SKB Z28ZJ8USt8/2t 8 t 6/Bt 8 t J7TJ7/J8-AREA-04600

I l l I l LI l I I I I l l I I I I I I l I ll l 1 I I I

•• ••• • • • 0 9 ••••••• • 19 •••••• •• 29 • ••• • • •• 39 •••••••• 49 • •••• • •• S9 • • ••• • •• b9 •• • • • ••• 79 •••• •••• 89 •• • • • •• • 99-A~E4 -04 700
Y28Z49S8700AFU~SKAS28lJ8US*8t6/8t8•JTTJ 7SJBY28Ub8Y6700S-IT28UJ8S28ZJ8US• AFU•SKAS28UJ8SSN+SKAS28UJ8S2-ARE4-04700

I I 1 l I I I 11 I l I l I l I ll I I I l l l l l I I I

•••••••• 09 •• ••• •• • 19 ••••• • • • 79 ••••• • • • 39 •••••••• 49 • •••••• • 59 • ••••••• 69 • • • • •••• 79 •••••••• s9 • •• ••••• 99• AlE A-049JJ
8ZJ 8USt8 / 2* BW97• Z8 tZ2VV t3S081 1,0818W9 7 • • 4TZ4/B*6/Rt 8 t J7TJ7SJ8Y29U*lX St6/8t8 tJ7TJ7SJ8Y28 ZtOSB700 S+OV2-A~EA-04 800

I 11 l l l l l l l 11 l l I I l l l 1 I I I I I l I I 11 I

•• ••• • •• 09 ••• • •••• 19 •• • • •••• 29 • •• • ••• • 39 •• •••••• 4 9 • • • • •••• 59 •• • •• • •• 69 • • • •• • •• 79 •• • ••••• 89 • • • • ••• • 99•4~:4- 04900
8lJ8us ~J7Zt 8t6/8t 8 t J7TJ7SJ8Y28U87S8700S+OV28lJBUS• S- IT28UJ8S28ZJ8US•S+OV29 UJ8S28UJ8US• S•OV28ZJBUSt 8/ -6~E A-04900

l 11 I l l l l I l 11 I I l I l l I l l l 1 I l I I 11

• ••••• • • 09 • •• • •••• 19 •••••••• 2 9 •••••• • • 39 •• •••• • • 49 •••• • ••• 59 •••• • • •• 69 •••••••• 79 ••• • • ••• 89 • ••• •• • • 99-AREA-05000
2t 6W97• - 8 / Z3T664Z8W97•J ITZ4/848Y8W97 • J 5/l4 / Nlll.8 t 4TN000. 8 t 5SHSOSH094 H0940•4R/5XH094M0Jl/2WMM0·5/3t~-AREA·05000

l 11 l l l 11 l l l 11 l 1 11 1 11 I I I l l I II 1

•••••• •• 09 ••• •• • • • 19 •• • •• ••• 29 • ••• • ••• 39 • • • • •••• 49 • ••••••• 59 • • •• • ••• 69 • • • • • • • • 79 • • • ••• • • 89 • •• •• •• • 99-A~E 4-05 100
OJl/3XMOJ 4 / 4UH/5SOJ5AOOOOOO• OOOJ9TSOOOJ9TVOOOJ 9 TK8000HSOSM0 -2/6X• OOOJ 9TM0-8/8/SOOOJ91 ~0Jl/9YLJ9T0008-A RE A-05 100

l 1 l l l l 11 l l l I Ill

••• • • • •• 09 • • ••••• • 19 •• • •••• • 29 ••• • • ••• 39 •• • •••• • 49 • • ••• ••• 59 • • •• •• . • 69 •••••• •• 79 • .• • • ••• 89 ••••• •• • 99-A~EA-)52)0
OOOH094tlS9W0-2HT0t0- 3M0- 2V9XHV9X094VlOXO-Ol8T2V0-0 , 8U5W0-0 S8U7Y0-018V3XO-Ol8V0/0-0•HWOt 089~V9X000800-A~E• - os200

1 1 I I l I l l I I l l l l

••• • •••• 09 •••••••• 19 • ••• ••• • 29 ••••• •• • 39 ••••••• • 49 • •••• •• • 59 • •• • •• • • b9 • • • • •• • • 79 ••• • •••• B9 •••• ••• • 9 9-AlEA-05300
OXXXX XXM0- 2089HV9X0- 38 S9tYJ36T3Z6U3/WOS28YT8XTOS2MO- bTOW0690UOt0VT8tTOSKOb92UOt OYT8STOSMTOT089H0890t-A,EA- 0 5300

I I l l l l 11 I I 1 1 l I I I l

&

.,,
~
i:l
~

...
C ,_
V,

~
~
C,
::,
::..

~
"" g

"Tl
~-
~

"
?'

~

~.
() ,.,
;,
C:

~ o·
"'
?
c.~

• • • • • ••• OQ •••••• •• 19 • •• • • • • • 29 • • •••••• 39 • • •••••• 4Q •• • •• ••• 59 •• •• • •• • 69 ••• • •• • • 79 •• • •• ••• 89 • •• •• • •• 99-A\EA·05400
OM089TOICTOWTOTeS9*/YU2tTOSBU4VH0-6TO WMWOT089HV9X0-7BS9• AwOXYU6S088M094V9X8S9 • H0940- 18/5TO~-OH0948VO-A\ EA-054))

I I I I 1 1 1 I 111 I 1 1 1 111

••• • • • •• 09 •••••• •• 19 • • •••• •• 29 • • • • •• • • 39 • • •• •••• 4 9 • • •••••• 59 • •• • • • • • 69 • • • •• • • • 79 •• •••••• 89 • •• • ••• • 99-A\E A-05500
YH0- 3094HOJ2V5*MH0-6V5UMOJ2Vb/llWOWO-OMWOW094AOOOOOO• OOO J 9TSOOOJ 9 1VV8UJ9TKHV9XO J 68S2YMOJ5V9X8S2Y -A\E A-05 5)0

I I 11 l I l I I I I I I I I I

• • • •• ••• 09 • • ••• • •• (Q • • ••• • • • 29 • •• ••• •• 39 •• • • •••• 4 9 •••• • • • • 59 • ••• •• •• 69 •• • • ••• • 79 • • • •• ••• 89 • • • ••••• 99-ARE A-05600
ZS. HX8VH0-3YO/SYOWBW2 XZH0-9 W5/ M0 · 6 W4U• 000Yl/LOOOYI W• YI/Y2SAY2SYOWCYO TY 2UBX8Wf6XO*OJOSH0940· 68W2X-AREA-05b00
I ll I I I 1 l I I l l I l l l I l

• • • • •• • • 09 •• • • • •• • 19 •• • •• ••• 29 • • • •• ••• 39 • •• • •• • • 49 ••• • •••• 5Q •••••• • • 69 • • • • •• •• 79 ••••••• • 89 ••••• • •• 99-AREA-J5700
AY2WYOTBXO•ZYYOSYOW•YOU090YWZlYOUMYOW089H089X6XYX9WX6WHY0/089H0890tOYY 0 t088H0940J I A000~-0 2. 8X8W2SK3 •AREA-05700
1 I I l I I I I l l I I l I II I I

• • ••••• • 09 • • • • • • • • t9 ••• • • • •• 29 • •• • • •• • 39 •• ••• • • • 49 •• • • • • • • 59 • ••• • • • • 69 •• • • •••• 79 • • • •• • •• 8 9 • • • • • • •• 99·A~EA-058JO
159F- 2G9Y2G9t878/ 34)W87VY5Y0·418Y6V D2G9W84H094250L2G9H692 Y8lH099000• 099W828t l-ARE4-n5800
I l l I I I I I I I l I 1 l l

••• • •• •• 09 • • • • •• •• 19 ••• ••• • • 29 • • •••• •• 39 •• ••• •• • 49 • • •••••• 5 9 . • • •• •• • 69 • • •• •• • • 79 • • ••• • • • 89 • • • • • •• • 99·A\EA·05900
08Y2X0-4NRY4S0-4F t ,KAS• 4V • • +OVA6U •• SJ5200ARL28IHIL8ERT MATRIXRK088K088K238J5200Atl0990+18LR5EO- AREA·J5900

l I 11 l l 1 I I I I l I I I 1 I I I

• •• • • • • • Q9 •• •••• • • l9 • •• •••• • 29 • • ••• •• • 39 • • •• • • • • 4q ••• •• • • • 59 • •••••• • 69 • • • • •• •• 79 • • ••• • • • 89 ••• • • • • • 9~-Al EA·Ob OOO
OGOOJ0 118K23BJ5200AOL280(NVERSERK08aK08RK2lRJ5 200ABL2 80MATR1X PR00UCTBK08BK08BK23RJ 5200AH0990+1 BL85F•Al EA·06000
Il l l II I I 1 I I I I I I I 1 I 11 I I

•• • •• •• • oq • •• • • • • • l 9 ••• • •• •• 29 •••••• • • 39 • •••• • •• 49 • ••• • • •• 59 • •• •• • • • 69 •• • ••• • • 79 •••• •• • • 89 • • • • • • • • 99-i REA-06 100
OO G006008RK238JS200A8L280TWIC£ I NVERTEORK 08BK088K23RJ5200 ABL2818K2382SSb7lAOA+0+ 119 17AO+I - A~<a-n~1no
I 1 I l 1 I I l 1 I 1 1 I I II Ill 1111 I I I I II

• •• • ••• • 09 •••••••• l9 ••• • • • •• 29 •••• • •• • 39 •• • • • ••• 4q••• • •• •• 59 •••• •• •• 69 •• • • • • • • 79 • • •• • • •• 89 •• • •• • •• 99·AREA·Ob200
-- ~4\~ A-06200

- - - - ----- - ·----------- - -

• •••• • • • OQ •• • • • ••• 19 • ••• • • • • 29 ••• • •• • • 39 •• ••••• • 49 • • • • • • • • S9 ••• • • • •• 69 • • • • ••• • 79 •• • •• • • • 89 • • • • • • •• 99-AREA·07SOO
-A~EA-07600

•• ••• ••• 09 • •• •• • • • l9 •••• •••• 29 •• • •• ••• 39 • •• •• ••• 49 ••• •••• • 59 • •• • • • • • 69 • •• •••• • 79 • • • • • •• • 89 •• • •• • • • 99-AREA•~7700
·AlEA-07700

• • • ••••• 09 • ••• • • •• 19 ••• • • •• • 29 •• • •• • • • 39 • • • • •• • • 49 ••• •• • •• S9 ••• • • • • • 69 •• • • •••• 79 •• •• •• • • 89 • • •••• • • 99· AlEA·J7800
· Al~ A- 07800

• • • • •• •• 09 •• ••• • • • l9 •• •• ••• • 29 • • •• • •• • J9 ••• ••• •• 49 •• • • •• • • S9 • • • • •• • • b9 ••• • • • •• 79 • •• •• • •• 89 •• •• •••• 99•A\EA·079JO
· AREA · 0 7900

z
0 0

<.!) ...
ct 0 .., ...
A. ..
lL o<
0 ..
u ..

V)

u.
0 V)

V)

0 w
z ""
"' A.

>(

"" ..
C
X ..
"" w ., ..,

0000 - --
0000000

I I I
w wwu.,www
- 0 - 00-r'\co
,-..o- ooff\o
U"\ o-oo-""'r'\ c:co-oo,.,.,N
"' "'- 00-r'\0-
..r N-OOf"\.0 -----o-cio
0~~0000
oo oc,0--
00 0 0000

I I
W W WUJWW~
~ - o - OO"f"\
-0 ,-.. 0 - .00 ""'
..Ol.t'\ 0-•00-~
..o coo - oOff\
,0 NU\ .. , 0 O"fl'\
.0"3- N •• OO"' _ _ _,_,.... 0-W
00 0 0000

oooooo -
0000000

I
WWWUJWWW
o - o - oc,,,
0 ..0,-.. 0 - 00
O .o!J"lo- 00-
O .oc:c c> - oo
O.ONln-100-
0.0 ..,. N-00 N---- - o­• • • • • • t

0000000

00 0()000
000 ()000

WWWUJ W~UJ
00,-.-0-0
eo..o ,-. o-e
00..0U'\O-O
00 .0 o:>O - o
0O..0NIJ'\-O
"' O..O.,;l'N - O N N_ ,,,,. _ _ _
0000000

0000000
0000000

wwwwww w
""100,... _ 0_
"°' oo-o r- 0-
,.,.,0 0 -oV"IO ­
t"'\00..,CCO­
MOO-<>Nll\ ­
t •"'Hl\0.0..rN­
t"\NN - ­.
0000000

00 0<>000
000<>000

WUJWWWU•H&J
Ot"'\OOt--0
Ot"I00..0,-..0
01"\00-0ll\O
0""'00.0COO
0""0().0NV\
0 f"'I V"'<)-0 <ii' N 1,1"\ ~ Nf'<J __ _
00 0 0000

-000000
00 0 0000

W"6JWWWWW
oo""oor- ­oo ~ <~o ..o ,._
00 f"'l 00.0..,..,
OO l"l"l <::10.000
001"°'100-0N
0 0 1-t"H.t'\ 0 ,0 ..,.
- \i'\C"'\"1N --

OO OQ0()0

Figure 8. .\latri., Calculation P,trl 6

wwu..iwwww
000 ..00,0 C,,.
0 .,. ..:- - «> NO
NOO O f"'- ,-.. C7\

- """' 01) rt\ O" 0-
0 ..t' ~ - co NO
NOOo,...~ ­
- '6'\oJ"INtf\~-

~~o ~o ,:;~
I I I

II\ ,.... CC c:o O' O" CD
0000000

UJWUJWWWW
0 N ..t O 0: t"'I ..0
0 ,-... Niez> O- ON
CO .0 ,.... N Ill'\ 0-,....

0 ..0 - O' "''""'' 0-cc o- ,-... o U'\ ON
Cl')U'\1/\N - 01'1"\
fll"l - -..o-- 1"'\
0000000
I I I I

\/'\,._COC00-0-CO
0000000

LA.WWWWWW
0 OOOU"\~O
OOO O NO" CO
o..,. -11'\ 0IJ'\,...
-0 - .0 -.t" Nf"\ ""'4,....,...."'""' Cl)
CO 0- o:, N ""\ - ,.,_ ..,. __ ,... __ ""'
000 0 000

I I I
"',... co o:::, ao CX> Cl)
C'lOOOOOO

WU.,WIJJWWW
000000~
o.ocoo~­
oc,-..,-ov'\NO
0 CC 0::: N -0 0- CD
..,. Nl,l'IM t-,. 0-
0--0C NNO
N-- -r,.._ .ON

000 ~ ~00
I I I I

..,.-0.,._.CC.<Ca),...
0000000

IJJl,.LH,L., WWw.JUJ
00000~0
00<D00~ '3"
ON.0 ..t- ,-..0
Ow",._c:o .--. -U'\
N ,... U"\ II\,._,.._. 4'
m-U>O-COtJ'\0 C>r'\N _ __ U"\

000~ 0 00
I I I

..r t,t'\ -0 ra-- t- -0
0000000

wwwwwww
OOOOONO
ooo-oor-~
ONN0-~...00
.O"""U"\a:>O ..Otil'\
,- .0 "' ..,. q, ,.r _,,_ -- o-"'o -t"\f"'I ___ ""
0000000
I I I I
N-.1' 4"1,/\lf\w'\II\
0000000

WWUJWWWW
0000000
0000000
00000CCN

W 0'1(100 _ 0 _
V) O,...N ..r U"HCO
m: o--coo,.ccco"I
W ..,._ CON4tf\ -

~ 0000000
I I I

~ ...,
::,
0
0

"" ...
><

\t\ .;l' ff'\,,,.. _ Na)
ooooooc,. ooooooc,.
oooooo o-
00000 0 0-
0 00 0 000"
0000000-
0000000-

• • • • • 1 •

0000000
I I f I I t

P,.. l"f\OCD CX>,._-0
N-"""""0000
oooooon
0000000
0000000
0000000
0000000
0000000
0 0000 - 0

""'..,. - 0 - 0-0-
""N -- O,O(')
onooo-oo
0~00 0- 00
O~OO C- 00
0000 0-0 0
0000 0" 00
00000"00
0000000
t f I I I I

- ~..t ~ N ../'M
- 000000
0000000
00 000 00
00 00 000
0000000
0000000
0000000
000- 0 00

f1'\NC:0 ___ _

000-0000
000-0000
00 0- 0000
000"0000
00CJ'I0000
000-0000
000-0000
0000000
I I I I I I

0000000
0000000
0000000
0000000
00 00000
0000000
0000000
0000000
0-000 0 0

0000000
0000000
0000000
0000000
0000000
00000 0 0
0000000
coooooo
- 000000

Q
w ...
"' u,
>
%

111
u
:,c ...

0 000 ---
0 000000

I I I
\&.JW WW W tu W
..... a - cl)l. t'l'\co
,..,.0 00 1"'1'\ 0
t,f\ 0 - 0o,. l""'l t"\
co o - oo ~ N
Nll\ - 00-""'0'
...- N - OOf"'\.O --- -o-m ,...
oooooco
0 0000 --
0 000000

I I
wwwu.www
,....- o-ca-""
.t)t-, o-oo""'
...:.Jt.. ... 0-0 0- 1""'1
-oaoo-oo"'
'° Nlf\-C O- M
..0 -4' N - O O ~ --- --o-co
0000000

00 0000 -
0000000

I
wwwwwww
o ,._ - o- oc,,.
0 .0 0- 0 0
0-0ir'IO - c O­
o-OC:OO-OO
O..ONlif\-00"
0..0 4' N-OO N-- ---o-0~00000

· O O O O O O 0
0000000

WWUJWWWW
oo,...-c - o
c o..o,-..o - o
OO,0&f't O - o
oo..occo - o
00 ,0NII\ - O
ll"'I0 -0 ..,.N ...,.O ~N-----ooooooc
0000000
0000000

UJWWWWWUJ
1""'100,-. - o -rnoo-o,... o­
"" OO..o~ o­
i!""\00.l)COO ­
r'\OO,ONII' ­
~"'0.0..,.N ­
fl'\ t\lN- - - -

000000 0
00000 0 0
0000000

wwwwwwu.i
o""oo,... - o
Ot'l'\0 0 .0,._0
QMO O -Olt"\O
0""00.0C00
Qr"\00 -0 NU'\
Ot'"HnO.O ~ N
"'f"l"\f\jN -- ­•
oooooco
- 000000
0000000

WU>WWWLJ.JW
O Or'\00,..._ _
0 0 "" 00 ..0f"'-
001"'\00'° "'
OOMOO..O CC
OOt""\00-0N
00l""li\1'10..04
- U'\r'\NN - -

00 00000

49

~

.,,
g_
a
?.

~

::!'
;;
l:l
" :,
~

~
~
2
!'

..
~-
~

"'
s.=
r,

a.
!;
E
"'
~
5
:l­e·
;:

'":l s

- -··
START OF FORTRAN COMPILATI ON

MACH INE SILE SPECIFI EO I S 08000
ACTU AL ~ACHJNE SllE I S 16000

- -
SEQ

I
2
3
4

5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

STHNT

C
C

"

6
1

2

4
9

5

FOR TR AN STATEMENT

APPENOIX E SAMPL E PROBLEM 2
EX ERC ISE LIBRARY FUNC TIONS AN O PU~CH OBJECT DECK
PR !NT R

FORHATl48HlA=?IISORT l l-COSIXl • • 2 lCOSIXI S INIXJ/ABSISl~IXl Ill
PRINT 1
FORHATl'HHO I oe:;REES A EX PONE NTIAL14l •B
LOGAR ITHHIBl=C I S IN17Xl =O C-0//1
f l • l. O
DEGREE• 7 . 5
OELTA•l . 57079632679489661923/12. 0
ARG•DELTA
A• IF l • F J l • SORTFII. O-COSFIARCl •• 2J•COSF IARG)
IFCFl-24. J7,7, 6
A=-A
8=E XPFIA I
C=LOCF18 I
O•F l •SINFIARC+ARC I
OIFF•C-0
P~INT 2 , F l , OEGREE,A , R,C , D, OIFF
FORMAT I I X, F}.O, F9.I , Fl9. I O,El9.I0 , 2Fl 9 . 10 , E12. l l
Fl • F l+!. O
OECREE=OEGREE +7 . 5
ARC• AR C+ DEL TA
lfl< l- 49.013, 4,5
PRINT 9
FORHA Tl lH I I
STOP 11 l
STOP 777

0750QR~ PAGE

"' ._

... ·,
o:i'
C:
::]

~

C'.
~

2..

&'
ol

.:;i

;l
5
"­c
?
':)

~
1,:,

b45 INPUT CHARACTERS

MODULUS IS 5
MANT !SSA IS 20

---\
STORAGE ASSIGNMENT- ARRAYS + EQUATED VARIABLES

NO ARRAYS

STORAGE ASSIGNMENT - SIMPLE VARIABLES

ARG
DEGREE
Fl
O!FF
D
C
B
A
DELTA

4301
4323
4}45
4367
4389
4411
4433
4455
4477

30/
32T
34V
36X
382
4 1/
43T
45V
47X

CONSTANTS LOCATED FROM 07924 TO 07999 I 2U-l9l

SEQ

001
003
005
006
007
008
009
0 10
Oll
012
013
014
015
016
018
019
020
021
022
024
025
026

STARTING ADDRESS OF STATEMENTS

START ING ADDRESS
:~,~,---\

52W 4526 53t
53X 4537 54/
54Y 4548 55S
56* 4560 5!.U
57S 4572 57W
58Y 4588 59S
60* 4600 60U
66* 4660 l>l,U
68Y 4688 69S
70/ 4101 70V
HU 4714 71 y
72X 4727 73/
74V 4748 7 5S
76U 4764 76Y
77V 4 775 772
79/ 4791 79V
BOX 4807 81/
82 T 4823 82X
85Z 4859 8!, T
87* 4870 87U
872 4879 88 T
88Y 4888 AQ~

c,,

'"'
-c·
~
;:;
~

....
C'>

:.-!'
;:;
~
:,

.t
f
"tl
3
~

..
5::·
~ r.
~

~
"
£.

~
~
"'
2
~

~

w

SNAPSHOT OF OBJEC T PROGR AM

I NPUT/OUTPUT AREAS LOCAT ED FROM 001-332

F IX ED O~JECT TIME ROUT!~ES LOC AT ED FROM 333-4279

•••• •••• 09 •• •••••• l 9 •• •• • • •• 79 ••• • •••• 39 • • • • •• • • 49 •• •••• • • 59 • ••••••• 69 •••••••. 79 •••••••• 89 •••• •• •• 99•A~ EA-~4 20J
9 ,26X6H610h J26XllHbl 5 0 . 0 X RW 4 A28l JOtHIA 3810 · AREA-04200

I l 21 I I l I I l ll l Ill l l l l lit I 1111 I l 2

••••• •• • 09 • •• •• •• • J9 •••• •••• 29 •••••••• 39 •• •••••• 49 ••• • • • •• 59 •••••••• 69 ••• •• • • • 79 ••• • •• •• 6 ••• ••• ••• 99•AiEA-04300
•l~i:6-04300

•••••• •• 09 •••••••• J9 •• • ••••• z•• • ••• •• •39 •••••••• 4 • •••••••• 59 •••••••• 69 •••• •••• 79 • •••••• • 89 •••••• • • 99-A~EA·04400
-4~E A-J44JJ

•••••••• o • •••••••• 1 ••••••••• 2, • • ••• • •• 39 •••• •• •• 49 •••• •• •• s, • • •• • • • • 1,9 • ••• • • •• 79 ••• • •••• 69 •••• •••• • 9 -AR: A-04500
BW9 7• F2TF2SBW97 • FAWF2S67JJ30 V= 16S*87003BT=l6Wt8 7004CX= 15Y/ J3V • B7003•/=4~Xt-A!E A·045JJ
l 11 l I 11 l I l ll I II l 11 I I

•••• ••• • o• • •• ••• • • 1• · ·· ····· 29 ••• ••••• 3, • • •••••• 4• ••• •••• • s, ••••• ••• 6• ••• • •• • • 1• •••• • ••• e, •••••••• • •-,~EA·0460o
ll7005•/ =3•/C$ ~2V=,0/ • 50/N•l 6S0t5• / •3•/Ct4EV• 3DV•30V• 52V• SO/tll70050/= 30Y-1 2XtV68Y2G78870/B7004EY~4EYN•ARE A·0•600
I l ll l II l l l

•• ••••• • 09 ••••• •• • 19 ••••• ••• 29 •••••••• 39 •• • ••••• 4 • • ••• •• • • 59 ••••••• • 69 •••• • ••• 79 •••••••• 89 ••••••• •• 9-A\EA-04700
t87004CT• •EVE*8 7004A/•4CTC*87003HZ•3 •1•3•/ S• 3DVt87003FX•4A/ ·3HZtBW•7 • HOWFO•B70030V•30Yt l 6St87D036T• 3-A~El -04 700
ll I 11 l II l ll l II ll l I I 11 1

••••••• • 09 •••••••• J • • ••••••• 2 • •••• •••• 3 • •••••••• 49 •• ••• ••• 59 •••••••• 6••• •• ·••• 7• •••• • • ••89 • •• ••••• 9•·A~EA•049)J

I
. RT•l6WtR7003•/ =3+/•4 GXtR70050/ • 3DV- 13/*R85Z2800Y87Z2G7R660*6W.7 • 10YF2SNIII. R87•9T77. e87ZNOOO. a88YH94 -A~EA-04ROO

11 I II I 11 I I I II 1 I •1 I 11 l 11 I

····· · ·· og •••••••• 1 • •••• •• •• 2, • •• • •• •• 39 •••• • ••• ~q ••••• • • • s • •••••• • • 6 • •••••••• 79 •••• •• •• 89 ••••• ••• ,9- AltA·0490G
WM0-29l/•00017VM0·8•2VSOOOl 7VMOJ • • 4 SLl7Y000AOOOHOq4Ht4•0-7Ht4U0-3M0-2 T4/ MT4/094V*5/0-0 l Bt6Z O- O,ASOt 0-A~EA·)4~J)

I • I I I I I I I I I I I I I

• •••• •• • 09 • • • • ••• • 1 • •••• •• •• 29 • ••••••• 3••• ••• • ••••• ••••••• 59 ••• • • • •• 69 • • •••• •• 7 • •• • •• ••• a •• • •• • ••• • 9-AREA-05000
- 058S,S0-0 IBS6/0-0l llS4VO-Oz MT4 U08•MT4/000R000 XXXX XX M0-2D8•HT4/0-3 Rt3UYJ36t 8T B/7VT4W21lV/3/t4W2M0• 6t5• - AREA-0500J

I I I I I I l l I I l I 11 l

•••••• • • o, • • •••••• 19 • • •••••• 2g •••••••• 3 • •••• • ••• 4 •• ••••••• sg ••••••• • 6 • •••••••• , • • ••••••• R ••••••••• 9.·AREt -05 100
D690/4UD V/ 21J*4WKD692/4UD Y/2Wt4WMt4 X08•Hoa•D*OliOR9t4XCt5t t4X Bt3U/ Y/6Ut4W6/8ZMO-ot5tMT4X08.HT4/0-78t3U-AREA·05 100
I ll I II I I I I I I I I I l I

•••••••• o • •••• •••••••••••••• 2, •••••••• 3 • •••••••• 49 •••••••• s • •••••••• 6 • ••••••• • 1, •••• • ••• eq •• • •• •• • ,.-A~EA-JSZJ O
8 YSO WOR8MQg4f4 / 8 t l ~H0.40- IR89 XDO•OH0.4RS5SM0-3094 MOJ 2S9UMM0 -6S9YMOJ2 TOVHT510 · 0MT5t094AOOOOOO+OOOI- AREA-J5200
I l I I I I l I I l I I I I I I I I

•••••••• o• •• • ••••• 1•··· ·····2• ••••••• • 3• • •• •• ••• 4 • •• • ••••• s• •••••••• 1>, 1• • ••••••• s• •••••••• ,.-A~EA•OS3oo
7YSOOO l7YVTl. Yl7VKHT4/0JbB9 7SMOJST4/897S 2s. HT9XM2G92500lWISSWl S2H9(0t 0250DZM92G•MDOOa•ROOOH Y-A~EA-053DO j

l l I l I I I I l I I l I •t l I l Ill 1 I

------ - ------- - - ------- - - - - - ------------ - - - -- - --- -- ------- - ----- --

tit
.,,
%.
cl
?:
....
~
V,

"" "' ~
::
~

0
'? .,,
~

-r, ~-
,:
;;;
!!:

C:
~

a.
r
~
:,
,:;i

'T]
:::
:,
~
§
,

?
<:Jt

•• • ••• •• 09 •••••••• 19 •• • ••••• 29 •••••••• 39 •••• • •• • 49 •••••••• 59 •• •• •• •• 6 9 •• •••••• 79 ••••••• • 89 •••••••• 99·A~EA·06900
A 6Rlll ll0·4SAW1U0-4C6·5/0· 4G6l 7/0·'tE60 7 S0·4NR08 X0-40 -AREt.-06900

111 1 l I l I 11

• •• ••••• 09 •••••••• 19 ••• • •••• 29 •• • • ••• • 39 •••••••• 49 • ••••• •• 59 •••••• •• 69 • ••• •••• 79 ••••••• • 89 •• • ••••• 99-ARE A-07000
-UEA-)7:>:>0

••••• • •• 09 ••••• • • • 19 •••••••• 29 • ••••••• 39 •••• •• • • 49 • • •••••• 59 •••••••• 69 •••••••• 79 •••• •• •• 89 •••••••• 99-ARE A-07100
·AREA-07100

• •••• • •• 09 •••••• • • 19 •• ••• ••• 29 •• •••• •• 39 • • ••• ••• 49 • • • ••••• 59 •••• •••• 69 •••• ••• • 79 • ••••••• 89 • ••••••• 99-AREA- 07200
-A RE A-07200

• • • ••••• 09 •• • • •••• 19 •••• • ••• 29 ••••••• • 39 •• • •• • • • 49 •• •• • •• • 59 ••• • •••• 69 •••••• • • 79 ••••••• • 9~ •••••• • • 99-AREA-07300
-AREA-07300

•••••••• 09 • ••• •••• 19 •••••••• 29 •• • • •• •• 39 • •• •• •• • 49 •• •••••• 59 ••••• • •• 69 • • •••••• 79 • • •• • •• • 89 • ••••••• 99·A~EA-07400
-AREA-0 7400

•••• •••• 09 • •• • • ••• l9 •• ••••• • 29 •• • ••••• 39 •• •• •••• 49 •••••• • • 59 •••••••• 69 •• •• •••• 79 •••••••• 89 •• ••• • •• 99-AREA-075))
t·ARE A-07500

••••• •• •09 • • • • •• •• t 9 ••••• ••• 29 •••••••• 39 •••••• • • 49 • ••••••• 59 • • •••• •• 69 •• ••• • •• 79 •••••••• 69 ••••••• • 99·ARE A-07b00
3DV38T4EV4CT4A/3HZ3FX • • 6JS200A6L281A=2 1 (SORl(l-COS(Xl •• 2)COS (XIS I NIX)/ABS(SI N1X l l 18K238J5200A8L280 l•ARE A-07600
l l llll l 1111 1 1 111

• •••• • •• 09 •••••• • • J9 • • ••• • •• 29 •• ••• ••• 39 • • • ••••• 49 • • •••••• 59 •••••••• 69 •••••••• 79 • ••••••• 89 • •• • •••• 99•AREA-07 700
OEGREES A EXPONENTIAltAl • A LOGARITHHl8J c C I S!N(2X) sO C-06KOS8K-ARE A-07700

l l

••• • • ••• 09 •••• • • •• 19 •••••••• 29 • ••••••• 39 ••• • •• •• 49 •••••••• 59 •• •• •• • • 69 • •••••• • 79 •••• •• •• 89 •••••••• 99-AREA-07800
066K23BJ5200AH0990+l6L85FOOA0030006L65FOOA008001AL85FOOA0090 106L85EOOA0050 l 48LB5F0080090!0BL65EOOAOO- AR EA-0 7ROO

l I I l l l l I l l ll l I l ll I I 1 11 l l 1 ll I l 1 11 I

• • • ••• • • 09 •••• •••• 19 • • •••••• 29 ••••• • • • 39 •••••••• 49 •••••••• 59 • • •••••• 69 •• •• •••• 79 •• • • •• • • 89 ••••• • •• 99• A~ EA-07900
70058K23AJ5200A8l2818K2320084!08180B157079632h79489 66 192COA2AOA7EOAAO+ l - AREl-07930

I I I I I I I I I I I I I I I I I

.,,
"'

-:r-'
i:: ...
e

~

C
" <>

a.
r
c'
;1
Q

;1
..;.
§"
v.

"'C

~
0,

CONOENSEO OECK

, 00801S, 0220Z6 , 030037 , D44 ,049,053034 , 035036N00001 026 000150983
L068l16 , I05106 , 110117810l/1 9Z H029NNNC0290568026/ 8001/0991 , 0Dl/00 lll71 0 • 000250983
,0080 15,022029,036040 ,047054 , 061068, 072/061039 , 00 10011040000350983
00000000000000 LOl4100, 092097, 081082, 0830841 0 4000045 0983
19l0522 L008693 , 689~91,~9304),04004010 40000550983
H567H408M661656M09941 5M089422H089001 L03636B , 33734 1 , 348355 , 3620401040000650983
H099?0 2/3J2/~ll0210862lFFlH094250 L033401 , 376380,38 1388, 393395l04 00007509B3
H2)6000H256000H24 40002FK • 662664/332 1035436 ,409416,423424 , 4264331040000850983
/FJH658306MH465M665668H668000 1029465,438440,447448,4524591040000950983
M65lH465A667669V4596682A6706562 , 0+0 L035500 , 470474,4814B9,4964971040001050983
MOtOO+OV5200•o 11o+ocoe96888568/22) L0345 34,508516 , S20527 , 53253310400011509A3
M422089M415099/332/8563G8564. L029563, 54 2~49,553554,55956310 40001250983
. OOOH0890tl66)70972H09920122 1A670664 L036599,569575 , 583590,591593lJ4000l3509S3
C6 64672~433/S664F4 33lM6e02202535i670099L03963~.6 07S 12 , 61662l,62863210 ~~0014509a3
A4979 ••••• ••• 9-00000000B 1026664,643652,6~4659,66266310400 01550983
9 10 AIEEXECUTEO L016680,666668, 6 70671,67304010 4000 1650983
00000000000000 L014100 , 09 2097,040040 , 040040 l 0400 01750983
H094H086HV06M0- 20890765HS276S060-0~ L035734 , 704708,71 l 7l9, 723727104000 1850993
11175 Ot 0/303//L W85280S 091H094000 LO 3 l 765, 74 2746 • 74'"14 8, 755 7591040001950983
C0-4W86,..0-4924, 20 18 T05 TH6740-46 /990-~S L03880 3 , 773 7AO, 784189, 79604 01 040002050983
M0-70890765VV30088KVV 30088SH099000l W87 L038R4 1 , 8llq l5, 823831,8380 40 10400021509R)
MOt OW820089~0 t 0?50H094LW85V8830001 1034875,849853,860864,868040 1040002250993
Y2 50t 87SW852E2CO- I W85A099 094RS33924/ 1036911,883890 , 897904, 0400401040002350983
AS62924•S924•• 876tl 72800B/34SSW8?W79 L036947,920924,928936 , 94l 0401 040002450983
• W80090C099089V/65W7?K6/88UAW79W82 l 0 3498l , 9 55962,970975, 040040104000255098 3
•2502VO+l00090 Yt870-0 A2X90-0YO-OtA7 l 035t16, 989996,t0,t l 0 , 040040l040002650983
• W82 W79MW750-IYYAOH089 L02Zt38,t24t31,t32t33,t34t35!04000 2750983
S7Hl8/470t7t HOA96t4 30 • 10POtl280S0990941L039t77,t43 t5J,t55 163 ,t70t7 71040002850983
ISS089W79+2G9 , 8/34W770V /42W79K L0 30/07 , t 79t 80 ,t87t91,t92/001C4000295098 3
6U71NOF •W89W790W892G9MM2G8/2 78 l 030/37,/17/15 ,/22/29,/30/341040003050983
8 755S W79S2G9R / 34 BU7 I DZEB / 1 5 L02 1/ 64 ,/4 2/46, / 5)/ 54 , / 5 8 /6 l l 0 400J 3150983
6 tl7US 100090Y2G92X98996 AW82W798/34 L034/9B , /70/77,/8 4/88, /9504010400,3250983
fl0940-51\00000-·ooooo 765 L022S20 , S06S l o . S 14S 1 5 , S 16S 17 104000 33!'>0983
8723000, 88 15B/54S02G90 -IMOI 0*0251 L033S53 , S29S33 , S3AS45,S46S4710 40003450 98 3
- W82BS83 ' 2G9ZEIH0940-3SW9 0W79AW82W7 9 t036S89,S58S62,S69S76,S8304010400035SOq83
Y2G9S97+,878•248T3l0- 4•H7650- lC280W85 L037T26, S97 T0 1,T)5T1 3,T20040104,0D3650q63
110006T69 2AOOVT 69W871VT970-41 H0990+2 L0 35T61,f31T39,f47T55 , 0400401040003750Q83
PW782GI\L2G9000V0-50-4100 941\71 2AW912GA l 0 37!9B , T69T 76, T84188, 192040 104000l85098J
VU18280SY2G92G78T62AW92W798U48W771S2G9 L03 8U3~ , U07Ul4 ,Ul 8U25 , ~33040 l 0 40003950983
LW932801\U07DW892G9HH2GI\SW92W798U07 L034U70, U44U48 ,U55U56,U60U67 104000405091\3
HU92/2+2HV250 • 0H099000M0 +221 2H2 170002 L037V07.U75U79, U86U9 3 ,V00V071040004150983
, 201HV290•3H0990008000H099000 , W8 7 L033V40 , Vl7V 19 ,V26V30, V370401040004250983
l0102508W2)924/8V911924•VV8 7924KA0t 02G9 L03 8 V7A , V48V56 , V64V72 , 040040 10 4000435091\3
• 2G9B/)4S0•02G9BV79L0*0250'2C92El L033Wll,V83Y87,V94V98 , W05040 l040004450983
M2El 2G98 /346/54250 H0 *02EOOHW64L2G9 L035W46 ,Wl9W23,W3 1W38 ,W39W43l 040004550983
+2G92E010 t 0251H2492G91\/1400040 L0 30 W76 ,W5 4W61,W68W72 , W75 W7 6 1040004650~A3
ooo,oooeo~ 9 1 L01 3W89,W81Wl\ 4,W85W86,W87WA81040004750983
BEAi l 004W93 ,W91 W92, W9 3040 , 0 4004010400 04850983
0 L002W96, 040040,04004) , 0400401 0400049509A3
05 H002V36, 040040, 04004) , ,400401040005J50983
22 H002837 , 040040 , 040040 ,040040 1040005 150983
ROT ~003T30,040040 , 040040,04 00401040~,s2509a3

H003S09 , 040040 ,040040,0400401040005350983
8 1< 97• F2T F2S8W'17• F 8W l 01 954U , 5 H5 3/, 53U53X, 54/54Sl04000545098 3

Ch
a,

i' a
;,

~
~ ,.
~
~

g_

~
"<:I
i3
"

-e;
~-
;i
~

~ ,.,

~
:,
~

'<

::i
5
~
5·
'1

? ...,

,- - - - - -- - - - - - - - - - - - - -- -- - --- - - - -- - - -- - - - - -- - -
1 F2S87CO)OV• l 6S<8700J6T=lbh t l02757/ , ~4Y~5S , SSL56t, 56US7/l040005550983
· 87004GX• l ~Y/13V•67Q03+/•4GX l 8700 L0)260T,57w~RX,S8Y5~5,59l60 tl 040005b509R3

5+/• J•tC•S7V=50/ • 50/N+l650t5 +/ •) +/Ct4EVL03964 5 , 040040 , 040040 , 04004010400057509R3
•30V+30V • 52V• 50/t870050/•~0V-17X t
V68Y2G78R70/B7004EV• 4CV~t67004CT•4EVE
t~7004A/•4C TGI B7003HZ= 3+/+3+/ S• 30Vt
~7003FX• 4A/-3HZt8W97 • HOWF0 t
8 700JOV•30V+l65t670036T•38T • lbWt8700
3+/•3+/+4GXt670050/•30V- l3/•RB512800
V8712G7BR60tBW97• IOYFlSNlll
. R81 t N777.R87lNOOO.
88AYH94WM0-29l/+00017V~0-892VS000l7V
M0Jl 94SLl 7 V000R000H094Hl 4t0-2Ht4U0-3
M0-214/MT4/094Vt5/0-0IBt6lO-O,BSOt0-0S
85250-01 858 /0-0 I BS4VO-O•M T '•U089HT 4/000
8000XXXXXX~0-2089HT4/0-)8 t)UYJ3b~ 8 T
8/7VT4W28V/)/ t 4W2~0-6t5t0690/4UO
V/2Ut4WX0692/4U0Y/2Wt 4WMt 4X089H0890t 0
M089 I 4XC t 5t t4Xllt 311 /Y /1,Ut 4WII / BlM0-6 tS I
"14X089HT4/0-7B *3UB YSOW088M0q4T4/
B*3UH0940- 1R89X00- 0H094RS5SM0-30q4
HOJ259UMM0-6S9YMOJ2TOVHT5t0-0MT5t094
AOOOOOO+ OOO ITVSOOO l 7VVT2Yl7VKHT4/0J 6
8975 MOJS T 4/6975 25.

HT9X~2Gq2500LWISSWl52N910t0250
02M92G9MD00A96000HV4/IVOtV25
S2+212801,S096H094250l 250

L03367Yl64T~4f , 65l66t, l,l,U6 7Vl 04000S8S0?83
L0)771S , 68Uh~Y , 69S70t,70/70VI0400059509A)
L03574X , 7 1U71Y ,72W72X,7)/74Xl040006050q93
l02777U , 75S76T,76U76V ,76277Sl0400061509A3
l OJ6R lt, 77l7~t ,79/7qv, IIOWAOX l0400062509A)
L036R4W,A7S92T,~2X83Y,83Z04 0 104000635098)
L027A7T, R~VR5Z , ~6 TR6U,86X87t l 0400064~0983
l01989S , 87V972 , 88TR8U, 88YB951040006550983
l 03692Y,89XVO/ , QOY9IV, 975040104,00665098)
L03696u , q3 wq4T , ,; x9S/ , 95Y0401040006750983
L03~•0S,?7S97Z,98X9~V,tOT0401040006RS0~83
l03At4t , t l/t 1Z,t2Xt3U ,t4/040104J006q50981
L0 35t7V,t4V*S/ ,t5Yt6V,16l040 1040007050983
l032/0X , t 8U*RV,t9T/Ot , /OX04010400071 50q8J
L037/4U ,/1W/2T,/2U/ 3/ ,/3Y0401 040007250983
l 037/R/ , /5S/52,/6U/7/,/7V0401040007350~93
L036S1X , /8l/9W, SJtS OU,Sl/040l040007450983
t03455l,S2SS2l , S3TS3X,S4/$4V l 040007550983
L036S9X , S5lS6t, 56XS7U , SA/040 1040007650~83
L036T 2 T, S9Vf0 S , TOZT l X, T 21104010400077509~ 3
l024l4X,T2YT3V,T3ZT4S,14Vf4Xl040007850983
L03318• , T5/ISV , T6ST6T , T6XT7J \ 040007950983
L028UOY ,T8YTAl , T9 tT9 U,T9 VU05 10400080509~3
L02 SU3 T, Ul TIJI X, Ul YU I Z , U2TU H 1040008 150'1~ 3
L033UbW, U3YU4W, U5TU6t, J6X04010400082SOq8J
L034VOt, U7 UU7Z , U8-U~T,VOt040104000A3S0983
L037V3X,V0YVIV,V2SV2T,V3*V3U l 0400084S0'183
L036V7l,V4SV4 W, V5TV6t,V6X040 1040008550981

,0106V)U0-0 Y2510-IA 0-12+2AW!t09S
C094089 RV3UUAWO/WOUAWOUW0XN000251 +
' 2G92E4Y2f4255N255000+1 WOX0t 4RU3t,2AO
A000S2G90WlT280YWl/2G9YT9YWl / • wlTW79
B75523025850929940456840179
•ABW3 Y974CB/42SY2Gqv 3 xBW 5 tAV4SS
V-4SY3XM-4T-4X+W7qW82S-4SW79VlllW79K
A-4UW795099W79V-0UW798+W82W79H089-Al
•W800956T5/+0tl 0955-4W095VX3T0956
6X6T924CH0940-IY-JUt870-JU-4XSWI I SW79
RY55-• X2+2G92+2RY7Y+2+2249+251--4UWOU
+-4YWO/SWOXRT9Y+t 87H0942 +1 Bt 24ijY7Y
0-450t0--4ZWOUSW79BY2SH2I YM2~9250H089
L-5t' 2G92E l-2522G9525 18000A099W79
Vl8VW79K+W 82W 79Y2G92G8 • 2G82G9AW8 2
- W83WltY-4St87RY5S924CRX9TBV45924C
+W82W798/346U71 SCL8/ 42AKJ6A
157079632679489661923 1A 84+ H
FOY 2G9WA48LO/SVK7V2G9KC2 482G90089
, Ot00L6WOt2CZ8 ll6Y8JI ZU•2G82G9AL6WW79
S2G9249-249l6VSL6WW79AL6W280SL6Z2EO
12G9249L249l6U ' L6U2El +2492G9+l6U251
+l3YWlt++ • , VOtV 2SHU9WL6UHV2/
HV4/K2Y8U02A2 +2Yl6V2 +1+VGV24 8 • W79252
A2+1252H094252SW82BtlOVK9 • 0-418UlllNN
Yl3Y2G9B-7/Vl2X0-41BU71LN2YL7t2G9R/15
IW848V4S+BA+
A31+-Y06/ t 870W84L9S

6Hl/07t OA888YW84tA7007/W84

A L038Wl/,VIYWJ/,WDSWO~,~OY4l/1040JJ8650983
L03JW4S , W\TWIJ,W2SN2X,W3UW)Y l 0 40008 750983
l036W7Y ,W5tW5X,W6UW7/,W770401040008850983
l 036X1U , W8WW9T,X0/X0Y,XIV0 401040008950983
L033X4X,X2SX2M, X3TX4t,X4Y0 40 1040009050983
L037X8U , X5WX~T,X7•X7X,X6/0401040009150983
l037Y2/,X9TYOt,YOUY1/,YlV0401040009250983
L034Y5V , Y2lY3T, Y3 XY4/,Y4YYSSl04000935099 3
L037Y95 , Y6TY7t,Y7UY7Y , Y8SY8Zl040009450983
l033Z2V ,YQXZOU , Zl/llV , llZ0401040009550983
L033ZSY , l)Ul4/ , Z4 Yl 5V, 25l04010400096509113
L034Z9S , Z6WZ7T , Z8/Z8V , Z9 T0401040009750963
Lo21-1l , -o•- ou , -ov-11,-1vo40 1040009asoqs3
L029-4Y,-45-4T , -4U-4V , -4X-4Yl040009950983
l033-8/ ,-5•-5 1, -5 Y-6l, -lt-7Yl040010050983
L037JlY,-8 W- 9T,JOtJOV,JIS040 l040010150q8)
L03SJSl,J2WJ3T,J4lJ4X,J5J040 10400 10250983
L035J8Y , J 6/J6Y , J7VJ8S ,J8Z0401040010350983
l028KlW , J9WJ9X,J9YJ9l , KOWKlll04001045098 3
L036K55,K2UK2Y,K3SK3Z,K4W040l040010S50963
L037K8Z,K~tK6X,K7/K7V,K8TK8Xl0400 l0650983
l037L 2W, K9XLD/,LOZLIT,llWL2Tl0400 l0750983
L038L6U, L3/l3V,L3Wl3X , l3Yl3ll0400 10850983
L020L8U, l6Wl6X , l6Zl7•,L7/L7Yl040010950993
L026Ml • , L9TL9U,L9VL9W,l9XMOU10400110509R3

<:11 ...

.,
~·
~

<O

~
r.

Q.,

~
:l
.:i

2
::,
~
c·
~

?
00

VHStW841 ,W84-2C98M9S/ 8U71ZTZYt87WI/ L035H4V,HIZH2T,H2 XH3S,H3WM32104001 11 5098)
RV4SRH3ZS +W79WR2S06/W82VOIWW82KS06VW82 l038H8T,H5 • HSV,H6SH6Z,~7X0 4010400ll2509R)
VNl/W82KV/422C9KBU71EOFR /l5H089VGX l034NIX,M9S~Ot , ~OUNOX,Nl/040104001135098 3
+WS0095BT5/COt006USH9ST +OtOW79Y2$9W79 t 037N5U,N2V~2Z,N3W~4/,N4Y040104001 1450983
SWltC2502G90089 , 0tOS251006/0t0+06SWOX L037N9/,NSZNbW,N7iN7ll,N7YNRVl0400 11 550983
++8T9YY2+22tlH0942+18t24A099W82 L03102S , N9T~9U , N9YOOV , OISOI WI040011650983
VH3ZW82K-W80WltSW79Y2G92G8+2G82C9BN5ZO L03806* , 03/~JY,04S04 Z, 05W06t l 04001175098)
A091C024688-2C9Y2C9t 87 L02208S,ObSObV , 06W07/,07S07WI 0400 ll 850983
8/34V07U2C9K02C9262H,H089L09W201 L032PIU,08X~9V , POSPOT,POUPOY l 0400 119S098)
H094+W80783A09W2R2 ' 09Y2R502R3W790 L0)3P4X,PllP2 W,P)IP4*,P4X04010400 12050983
8PbX2840H0890tlBP8SVPRSW79RA09WW79S2C9 L038PBV,PSWP6T,P6XP7V,P8S0401040012150983
SR0• 0-2 , 0K ll H0q40-1-09WR0/A09WRO/ L03301Y, Pq f P9X,P9Y00V , 01S04010400 12250983
AROSO-IS0- 10*2VOISOt 2BAO- I Ot 20RO/OPq L03605U,02W03T,04/04V,05V0401 0400 12350983
H0890t 2VP8W0Pq2R/348U71SONY09W2G9/278 L03709/,06S07t,07U07Y,08/08Yl04001245J9R3
809VA5+1A BBWIU0-4S L0!9R lt,09W09X , 09ZRO/,ROSROT 1040012550983
BW IU0- 4C8- 5/0-4GBL7/0-4E807S0-4N L032R4S , Rllt2X,R3VR4T, 04004 010400126S0983
ROBX0-40 LOI ORSS,RS/qss,040040,040040 1040012750983
30V3 BT4EV4CT4A/3HZ3FX.. l023F2S ,FOTFOW ,FOZF IS,F\V F \Yl040012850983
8J5200ABL2BIAa21(S0RT(l-COS!Xl ••2lCOSIXL039F6/ , F2XF3t, F3U04D,0400401040012950983
lS IN(Xl/ARSISIN(Xl) l8K238J5200ABL28 l035F9W)F6SF6S,F8SF8W , F9t F9Tl0400 1J050983
0 ! DEGREES A EXPOL039G3V , 04004D, 040040, 040040 10400l3150983
NENT!Al1Al•8 LOGAR ITHH(S)zC L039G7U)G3WG3W,040040,04004010400132509R3
I SIN12Xl~D C-08K08BK08RK238J52 L035HOZlC7VG7V , G9UG9Y,H0SHOWl0400 !3350983
OOAH0990+ 18L 85FOOAD03000 LOZ4H3T,HlTHZt,H2UH2V , H2YH3/1040013450983
RL8 5FOOA00800 l8L85F L019H5S,H)YH3Z , H4SH4V,H4YH5S10400 1J5S0983
OO A009010BLR5EOOAOOS L020H7S,H5WH5l,H6SH6W, H6XH7tl040013650983
014BL85F008009010RL85 L02IH9T,H7WH8t , H8/H8U , HRXH9tl040013750983
EOOA0070058K23RJS200A L021!1U, HqVH9Y ,l0/lOU, IOYIIS1040013850983
8L2818K23200841081808 L02113V,I IZl2t ,12Ul2Y,13S040I04001J950983
l5707963267948966 192COA2A OA7EOAAO+I L03517*,15Zl6t,16Tl6X, 17 t 0 4010400 14050983

L02819Y ,17Wl9Y,040040,040040104001415098)
H089HOt0J36MX08034HJ350t7M0• 6Z68+X29L27l039X35 , XOIXOR,Xl5X22,X 29040104001425098l
)23V, 27ZHOt3094H099200H23Y334BESbO•O+ L037X72 ,X40X44, XS IX58, X6504010400 14350983
6E25010-60710 t O• VCl20tOKVC750 t OSH094Zl6L039Yll,X81X89,X~7Y05,04004010400 144~0983
/332//H099100M-79034 , 0 +06Z43 L028Y39 ,Yl6Yll,Y!8Y25,Y32Y36104 001 4550983
VCl2J 362H24/100M0100 • 00094BJ 37VY820-ll L038Y77 , Y48V55 , Y62Yb6 , Y70040 104001465098J
8Y55BQ08HK22C848Y32B008LO• OOIOBZ43 L034Zll , Yb2Y86,Y93Y97,ZOIZOS1040014750983
8J37VY970+118Zl2HK22M09924/60-0H- 06 L035l4b,Zl6Z24,Z28l3Z,Z39Z431040014850983
M094-0ZV-3123Ul894X H094Y862088 L033Z79 , Z54l62,Z66Z69,Z730401040014950983
6-46089. 8-07089 H094000BOOOVJ3223Vl L035- l4, Z88l96,-0J-07 , -150401040015050983
C24 / 099BKOB/8J32l23UM24Z089Al73M0-2099 L038-52 , -22-2 7, -Jl-35,-42-46 10400 1Sl50983
H0-5089MOtl24SV- 790tlll24TL27lO*IRJ37 L037-89,-~0-67 ,-75-79,-86040!0400152S0983
M094J09VC12J3628C 84M24SOtlVJ3224Tll 0 tl L038J2 7,-97J05 ,J09J16,J240401 0400 15350983
, 24TB000 HJ51H0q90+18000H094 L028JSS ,J32 J36,J37J41,J48J52104001 5450983
00-00000L09M0-224WHK 070-3 L025J80, J60J61, J62J63,J67J7410400 15550983
8J89H094SE7424WV0-024WK8000H0q4M24/ 099 L038Kl8,J85J~9,J~6K04,K08Kl21040015650983
8000VK4323VIC24/0998K08/MZ68K568K98000, L039K57, K2)K31 , K)8K43 , K5004010400 157S0983
MZ68K71894X 8J32089 HK7ll68M08924Z L036K93 , K65K69 , K72K80 ,KB70401040015850983
,23UVK0823VIB000H094+0-2l2780-300+ L034L27 , K9~L06 ,LIOL14 ,L 2!L2510400 15950983
H094VL4723VI HO-OO+OM0 +00-06J37H0940-l L037L64,L32L40 ,L47L54 ,L5804010400 l 6050983
Vll70-018L32800860- 0H094M0-325SSE7425S L038H02 , L73l77, L8\L85,L89L9610400!6150983
VMJl2SSR80-70-0I B0-70-0~80J08Z43Sl7V l036H38,Hl\Ml9,M27H31 , H3504 0 104001 6250983
, ! 9WVF5123Vl/024,0+00H099HQ970+2 L032 M70,M4 3M51 ,MS5M59,H60H6410 400 16350983
HA49, 001B0330-0 l841ZO- OAM01019XMH089 L036N0b, M75~79,H87M95 , N02N0310400 l b450983
, Ot0A0-6099HA450+2M25V,0+2BN490tl0 L034N40 , NIIN18,N25~29,N330401040016550983
V07419V28Nb80-0EAL2719X8N75SL2719X l034Nl4 , N49~57 . ~b4Nb8 , N750401040016650983

~

.,,
~
::,

~

....
-~

V,

}
::,
:,
~

0
~ ·

....
~

"'l
~ -
~
<!)

s.:
ll>

2,

r
o'
E
"" ..,,
,::
::,

:?.
c·
~

"C ;
~

I
------------------------------ -----------------------------
0 l 9XF500M 19X6P040-0FCF 50864RO 15 S l 032006 , N6 2Nfl3 , N8 7N95 , 00204010400 16 75098 3
V022f4RKY862f48•L2719X019X0430H0890 • 0 L037043 , 015022 , 029036,03704010400 16850983
+83723SSE0523SC23S l 9XBP28UBP97M25Y0•2M L038081,05!058 , 06S0 70,0740811040016950983
H0990+2HA53A0-9099RA38VP66F48KC0-6F50 L037Pl8,089093 , POOP04,Pl2040 l 0400170S0983
8029T80 l4S023Pl 7W00 1M866YHF50089 L032P50,P24P28 ,P32P39,P43P441040017150933
M863M27l0t3BP97Y6620tCC0-9F508P92/ L034P84,PS5P62 , P66Pl3, P80040l0400 17250983

I
Cl7W23T8065UYl9V0• 06065H032C23Y0998029TL0390 23,P92P97, C04C08 , 0120 1910400l 7 35098]
NC00.8000MO• Ol7VA0-6099M0-6089+17VOt 0 L037060,028029 , 033040 , 04705410400174509A3
6Jl7ZOtOO•OHR~8DO•OO• OHh900+0HA53 , 000 L037Q97, Q6507? , 076083 , 0900941040D 17550983
VRIOOtOK6R5 28R340+0 H099VR520+ 1l6Rl0 L036R33 , R06Rl0 , RLAR22 ,R30040 1040017650983
YG810+0, 0 • IHA530•1 H099ll 18A460-0l L033R66, R4l~45 , R52R59 , ~~7040l0 4~0 17750983
A0-909911R930-0FOO+ODOOH099 l026R92 , R74Rij2,R86R87 , R88R8910 400 1785098J
IH88D+ 1 SO• l 000998+ 440-0EV • 44F48BC0-9f 50L0)9 • 31, +00+04, +.;: +09 , + 17+ 251 Qt,00 l 795098 3
8+82UAF50099B+A20•3 00t l 0•2H0890tl L034+65,•37+44 ,•52•59, +6604010400180509B3
V•820 • 28~0998+44H099000B+94ZAF470+0 L035A00 , •74+ 7 8 , +82+89,+94 040 l0400 l8150981
~B620+08A3 30-0FH0990•4D0+0MF 50 YM l 0)2 A32 , A0 8A l 6, AZ 3A27 ,AJl 0210400 I fl250'l8 3
BA66Z IJ 7Vl000! 000l000 ,l 7WR008 L029A61,A38A42 ,A46A50,A54A58 10400 l 8350983
8L96HA45089Y8620t0MA8A95Zl000 l029A90,Ab6A73 , A80A81 , A82AA710400184S0983
BA3800t 0COH089CA49089AB40T l026816,A95A99,800801 ,80581210400 1RSS098J
, OtOMOtLOt0lL27YO• ZB26ZMO+lO•OM l03 1847,RZIA28,B296]6 , B40R47104001A6S098 3
MM 25YOt36A38l . 0000 L01 9866,849~56 , Bb0A61 , A626631040018750~33
M089099Y06S8880D +OJ7W+Ml4W089Ll7VOtO l036C02 , 874881,888889,B9604010400 18850983
8 15VNOOS. , 23V/ 332/8C84 l022C24,C07Cll, C12Cl6,C20C2110t,00189509R3
BC07K8C840A2 868BA L01 8C42, C30C3A,C39C40, C4IC42 1D40019050983
88B8ABB L007C49,C44C45,C46C47,C48C4910400 191S0 983
Rl28BC160J36C68U t UOM~OO T./)31 l029C7R, C5t,C~8 , C65C7J , C74C751040019250983
/8Z28DJ36037M25Z041 • 75Z23 SV02723Vl l034012,CAOCR4,C9 LC98 ,D0504010400l93S0983
H26t04lA26S23SL2 7Z3]3M t UOO • ORLW97333 L036D48, 020027 ,034042 , 049040 10400 19450983
8E91L8C2504LR8C58KBC75/333/8Z28 l0ll079,054D6 2 , 06707l,D7507610400 19550983
BE052D0 BE202000D200E04F028E l 5 ' RU7 1 L035E l4,D8A096 , ED3EOS , E06Ell l 0400 196509R3
F071 1FE05JM26V23Y/Z28285, 200L2791804 L036E50,E20E25 , E32E 39 , f43E5010400l9750983
KE2S4/080H26V23Y , 00173Vll080279KZ281 L036E86 , E5bE60,E67E74,E7SEA21040019850983
BE56DJ36FOROJ36F21UIUOBBF2 3041RUIUOE L036F22,E 9 LE9A,F~5F10,F1804010400l9950983
SE742)SV02723S6N/ll . 8C84E L026F48,F30~38 , F42F43 , F47F48 10400200509R3
OO, O•OM08914WM099089A0- 6089RF990-0 1 L035F83,F5 1F55,F62F69 , F760 401 040020150983
839*0-0AA0 -9089, 0tOH l 5YOiOSl9XSY862!9V L038G21,F92F99 , G03G10,G l4Gl51040020250983
YG8906S8G650+0 8G8 10+0-BG8 10+0'6G850+0+L039G60,G29G37, C45G5 3, 040040 1040020350983
8G93Vl3SO•IIBJ37BC22- 06S , 0 +18J31 L032G92,G65C73,G77C81 , G85G89104 0020450~83
A~670-0lHOR917U)26W26X)2 6YS22TB28t0- 0A LOJ8H30,HOIH08 , Hl5H19 , H230 40l0400205509A3
BH81H23S0+0 , 26YVH6126WIH23S0 +L V04XO+ll l038H68,H3.H42,H46H54 , H610401040020650983
804XO• I BJ 378H350+0 , C0+0 8638 l 6ff 61 l8U LO 37 I 05, H77H8 I , HA 9H96, l Ol 04 0 I Ot,0020 7 50983
Vl6T26W1 8H6l8! 7 10- 0FH22W0+4Yl7603W L034139 , 114!18 ,1 2613l , 1400401040020850983
R l 800+0FYO • OOJWRO l S0•0+801 SO+O-N / 21. LO) 6175 , I 11A 155 , I 63171 , 175040 l 040020950<l83
8!71Vl960+128J378148ROOYO•l 801 S8J37 L03601/, !80 1R8,!92196,00UOOY 104002 10509R3
,OtlV03W0 +2 180)W0 +2 H099+0 •l22T806S l 0 3504W, 0 IW02U, 0 3S0 3W, 04J040104002 1150981
fl!710-0EH22WO+l+l9VV07Y26Wl814tV10t 26Yll03908V , 0 5V06S, 06W07U , 07Y0401040021250983
S0-922W+ 27W23SS23S22ZAL2722T-22ZA22Z22TL03912U,09Tl0t,IOXILU ,LIYOt,Ol04002l350983
+22T l 9X88670-0!Ml9XOOOL M1 5Y09910008A54 L03816S , 13S14t,l4Xl4Y,15Vl5Zl04002 1450983
Vl8S26WLH22ZD• 0 ,26WVH6126X100+00t2H089 l03820t,l7/17Y,18Sl9t , 19X04010 40D21550983
, 26XBH610t4 l 26X8H61 L02922Z,20V21T , 2 1X22/ , 22U22Xl 040D2 1650983

5 L0 1424T, 23T23V, 23W23Z , 24S24Tl040021750983
0 . 0 X RW LO I 726•, 24X25* , 25T25W,25Z26tl040021850983

4A28l) 0*1BA38 L01627W,26T26W, 26X26Y , 26Z27Tl0400 21950983
10 L00327Z , 040040,040040 , 04 00401040022050983

/52W080 022150983

~

.,
;r:·
:;
"'
~

s=
"
£..

5
~

"1
C
:;
~

f
.,,
'-'
~ -0

- -
ENO OF COMP ILA TION

PRESS START TO GO

- - ---- - ----- -- -- - - -- - - - - -- - - - --- - - ------------- -- - - - -----
.i., t ~ SORT(1-ccs; X) •*2}C0StX)S IN (X) /ASS , s INl xi} 1

DEGREES A EX?O~E~T IALIAJ ~R LOGA?. ITHH(BJ:C ! SPH2Xl•O c-o
I . 7 . 5 0 . 2588 190 451 0 .1 295399375€ 01 0 .2588 190 451 O. 258819045 l 0 .4E -19
2. 1 5 . 0 1.0000000000 0 . 27182818211€ 0 1 1 . 0000000000 1. 0000000000 o . OE 00
3 . 22. s 2 . 1213203436 0 . 8342144716E 0 1 2.1 2!3203436 2. !213203436 c. oe oc
4. 30 . 0 3.4641016151 0 . 31 94 774551 E 02 3 ,464 10161 51 3. 464 10 16151 o . OE 00
5 . 37 .5 4 . 8296291 314 0 , 1251645325E 03 4. 8296291314 4 . 11296291314 0 , OE 00
6 . 45. 0 6 , 0000000000 0 .40 34287935E 03 6 , 0000000000 6 . 0000000000 o . oe oo
1 . 52 , 5 6 . 7614607840 0 , 863n05268E 03 6 , 76 14807840 6 . 76H80 7840 O, OE 00
8 . 60.0 6 . 9282032303 0 . 10206~8443E 0 4 6 - 92820 32303 6. 928203 2303 o.oe oo
9 . 67.5 6 . 3639610307 0 . 58054 13502E 03 6 .3639610 307 6. 3639610307 o. oE oo

10 . 75 . o 5. 0000000000 0 . !464 131591E 03 5 . 0000000000 5 . oooooooooo o . OE 00
I l. 82 .5 2 , 8470094961 0 . 1723615989E 02 2 , 8 47009 4 961 2. 8 4 70094961 O. OE 00
l 2 . ',10,0 0.0000000000 1. oooooooooo e oo 0 . 0000000000 0 . 0000000000 -0. 4E-7.0
I 3 . 9 7 . S - 3. 36464 75863 0 . 34574 l9839F-O l -3. 3646475863 -3. 3646 475863 o.oe oo
14. 105. 0 - 7. 0000000000 0.9! 18819656E-03 -1 . 0000000000 -1. 0000000000 o . oe oo
I S , 1 12 .5 - 10 , 60660 171 78 0 . 2475206303E-04 - 10. 6066017178 -10. 60660171 78 o . oe oo
l b . 120. 0 -13. 8564064606 0 . 9599290509E-06 - 1 3 . 856406', 606 -13. 8564064606 o . oe oo
17. 1 2 7.5 - 16. 4207390469 0 . 7388625308E-07 - 16 .4207390469 -16. 4207390469 o . oe oo
l 8 . 135.0 -18.0000000000 O. l 522997974E-07 - l R. 0000000000 ·18. 0000000000 o . o e oo
19 . 142. 5 ·18 , 3525906995 0 .1070461693E-07 - 13 . 3525906995 - 18. 3525906995 o . oe oo
20. 150.0 -17. 3205080757 o .3004684793E-07 -17 . 3205080757 -1 7. 320508 0757 o . oe oo
2 1. 1 57. 5 - 14. 849242404 9 0 . 355617 1481E-06 - l 4 , 8492 42',049 -14. 8492424 049 o . oe oo
22 . 165.0 - I I. 0000000000 0.1670 170079E-04 - 11. 0000000000 - 11.0000000000 o. OE 00
23 . 172,5 - 5.9528380374 0 .2598455530E-02 -5. '1528 380 374 -5. 9528380374 o . oe oo
24, 180. 0 0 . 0000000000 O.lOOOOOOOOOE 01 0 . 0000000000 0 . 0000000000 -O,)E-16
25 . 18 7 . 5 6,47047612 76 0 . 6457911327E 03 6. 4704761276 6 . 4704761276 O. I E· l8
26, I 95. 0 l 3. 0000000000 0 . 4424 1339 20€ 06 1) . 0000000000 13.0000000000 o . oe oo
27. 202 . 5 19. 0918830920 0 .1~56598407E 09 19, 0 918830920 19. 0 91 8830920 o . o e oo
28. 210. 0 24. 24871 13060 0 . 3396890234€ ll 24. 2 487 11 3060 24.24871 130 6 0 o . oE oo
29. 2 11.5 28. 01 I M89624 O, l463495638E 13 28. 0 1184896?4 28. 0 118489624 O. OE 00
)0. l25. 0 30. 0000000000 O. I 06864 74S8E 14 30.0000000000 30 . 0000000000 O. OE 00
3l . 232. 5 ;?9 ,9437006150 o . 101 0145 526E 14 79, 9437006150 29 , 94 37006 150 o . oe oo
)2. 240. 0 27 , 7 128 129211 0 . 10A5229847E 1 3 2 7. 712 81292 11 27. 7 1281292 1 I o . OE 00
n . 2H. 5 23. 334 523 77 92 0 ,136 1616844 € II 23. 334 52377'12 23. 3345237792 O. OE 00
34. 255. 0 11. 0000000000 0 , 2415495275€ 08 17. 0000000000 1 7. 0000000000 O. OE :>O
35. 262 . 5 9 , 0586665786 0 , 8592685341€ 04 9 . 0586665786 9 . 0586665786 o . oe oo
36. 270.0 0 . 0000000000 1. oooooooooo E oo 0 .0000000000 0 . 0000000000 0 . 4 €- 20
37, 277, 5 -9. 5763046688 0 . 6935275619E-04 -9. 5763046688 -9. 5763046688 O.OE 00
38. 285 . 0 - 19 . 0000000000 0 .5602796438E -OR -19. 0000000000 -19. 0000000000 o . oe oo
39. 292 ,5 -21. 57716 44663 O.l05S333309E-ll -27. 577 1644663 ·27 . 5771644663 o . oE oo
4 0 , 300. 0 -34 . 641 0161514 0 , 9028 130704E·l5 -34 , 6'tl016 1S l4 · 34 . 6410161514 o . oe oo
41 . 307 . 5 - 39. 6029588779 0 .6319074743E· l 7 -39. 6029588 779 · 39. 6029588779 O. OE :>O
42. 315 . 0 ·42.0000000000 0 .5749522264 E- 18 -42. 0000000000 ·42 . 0000000000 o . oe oo
4) . 322. 5 - 41.5348105304 0 ,91 55055464€-18 - 4 1 . 5 348105304 -41 . 5 348105304 O. OE 00
44 . Ho. o • 38. 10511 776b5 0 . 2825905416E- 16 -38 .105ll77665 ·) 8 .1051177665 O. OE :>O
45, 337 . s -31 . 819805 1534 0 . 1516471339E•l3 -3l . 8 1980S l 534 - 3 I. 8 l 9805 l 5 3 4 O. OE 00
46. 345 , 0 -23,0000000000 0 ,1 0261 87963E-09 -23. 0000000000 -23 . 0000000000 O. OE 00
47. 352 . 5 - 12 . 1644951 198 0 , 5212269879E-OS -12. I b449 5l l 98 - L2 .164'•9Sl l98 O. OE 00
48. 360. 0 0 . 0000000000 O. l OOOOOOOOOE 01 0 . 0000000000 0 . 0000000000 - 0 . IE· 1!>

Ac:curn.c;)' (Arithmetic Routine) ,.. 32
Ac:curacy (Fortran Functions) ,...... 34
A-Convcr)ion 17
Alphamcric Conversion 17
1\ rithmctie Expressions 10
Arithmetic Opcmtion Symbols 10
Arithmetic Operations 11, 30
Arithmetic: Prcdsion ,......... 7
Arithmetic Routine 31
Arithmetic Statement 11
Array Storage 9, 23, 24
Array Stornge P r,.,scrvation (Linkai.c Stnt<,mcnl) 2.'3
Arrays in Storage 9

IIAC:KSPACt,; Statement 15, 2 1

C:ill Card 25
Carriage Control .. 18
Characters, Source Program 6
Condensed Card Deck 42, 43
Constants 7
Constants, Fixed-Point .. 7
Constant~, Floating-l'oint 8
Continunlion Lines 6
C:ONTINUE Statement 14
Control Card 26
Control Statements 11, 12
Commcnts Linc 7
Compilation Halt 41
Compibtion T imr 36
Compiler Description 38
Compil<'r Ouq:ut 40
Compiling Opcration Procedures .. 38
Cllmpiling Pro~-cd11re 39

Data I nput 19
n1MEN~10N Statement 9, 21, 23, 24
oo Statement 13, 14

E-Cunvcr,ion ,.............................. 16
£ o Statement 14
e;ND FILE Statement 15, 21
m,>Ul\'AI .ENCE St.1tement 21, 22, 24
Executing the Segmented Program 43

F-Conversion 16
Field Formnt (Repetition of) 18
Fixed-Point Con, tants 7
l•ixcd-1:'oint Varinblcs 8
Floating-Point Constants 8
Floating-Point Vnriablcs 8
Format Houtine 35
Format Specification 16
F01mat Spccificntion List (Repetit ion of) 18
J'OHMAT Statement .. 11, JS
Fortran Functions 7, 9
Fortran Statements 11
Functions 7, 9, 32, 38
Functions, Fortran .. 7, !)
Functions, User 9, 38
c:o 1·0 St·ntement (Computed) 12
co TO Stntcml'nt (Unconditional) .. 12

Halts or Error Conditions (Object Program) 42
'I 11-Conv<:rsion 17

~ I-Conversion 16
Si JI-' Statement 12
iii II' (SENS!': LICHT) Statement 12

Index

II-' (SENSE SW IT CH) Statl'menl 13
l11dex (oo Statement) 13
Initialin1tion (Monitor Program) 25
Input/Output Operations 19, 35
l11p11t/ 011tput· Option 22
Input/Output Statements 11, 14

La,t Card Test 13
J.ibrary (Lill) Tape 23, 24, 25, 38, 43
Linc, Comments 7
!.inc, Continuntion 6
Linbgc Sta tcm<:nt 23
Lists 15

Machine Hcquirc-mcnts 5
Matl'iccs 15
Monitor Program 23, 25
Multiplc-R!'conl Formats .. 18

Naming Variables
Numcdc Conversion

8
16

Object Pmgmm Opcration Procedures 42

rAUSE Statement 14
Pcrformnnce Data 36
l'rPcision. Arithmet ic 7
1•111:---r Stat<'mcnt 14, 20
l'ro<:cssor Phases 26, 27, 28, 29, 30
Processor Program 26
Pro1,'TI1m Linkage 22
l'UNc.:1-1 Statement 14, 20
Punching a Source Program .. 7

Hangc (oo Statement) 13
nEAD Statc,ment 14, 10
HEAD I Nl'U'J' 1'Al'E Statement .. 14, 20
HEAD TAI'i,; Statement 15, 21, 22
11i::w1ND Stntemcnt 15, 2 1

Smnple Programs 43
Scale F:ictors 17
Segment Location (Linkage Statement) 24
SJ::NSE-LtC IIT Statement 12
Source Program Characters 6
Source P rogram, Punching 7
Source Program, 'vVrit-ing 6
Spcciflcalion Statemt'nts 11, 21
Statement '.'lumber .. 6
s roP Statement ,.. 14
Storage Allocation 41
Subscript Forms 8
Subscripted Varinble 8, 9
Subscripts 8

T itle Cur<ls 23, 24

Use of Moniwr B l'IW<-'Cll Segmcnb 25
User Functions 9, 38

Variahlcs 8
Variables, Fixed-Point 8
Vnriables, F loating-Point 8
Variahlcs, Naming of 8
Variables, Subscripted .. 8, 9

Wltl'l'E OUTPUT TA PE Statement 14, 20
w11n-i,:; TAP£ Statement .. 15, 21, 22
\ \lriting f.xpressions .. 11
Writing the Source Program 6

X-Convcrsion (Blank Fields) 18

61

READER'S COMMENT FORM

Fortran Specifications and Operating Procedures IBM 1401, Form C24-1455-2

• Your comments, accompanied by answers to the following questions, help us produce better
publications for your use. If your answer to a question is "No" or requires qualification,
please explain in the space provided below. All comments will be handled on a non-confidential
basis.

• Does this publication meet your needs?
• D id you find the material:

Easy to read and understand?
Organized for convenient use?
Complete?
Well illustrated?
Written for your technical level?

Yes

D

•
D
D
•
D

No
D

•
0
D
D
•

• What is your occupation? ____ _____ _______________ _

• How do you use this publication?
As an introduction to the subject? 0
For advanced knowledge of the subject? D

As an instructor in a class? 0

For information about operating procedures? 0
As a student in a class?
As a reference manual?

•
D

Othc:r --- - ------ --------- - -------- ----
• Please give specific page and line references with your comments when appropriate.

If you wish a reply, be sure to include your name and address.

COMMENTS:

• Thank you for your cooperation. No postage necessary if mailed in the U.S.A.

C24-1455-2

fold
fold

........ ' '

BUS I NESS REPLY MAIL
NO POSTAGE NECESSARY IF MAILED IN THE Ut-llTED STATES

Attention, Product Publlcotlons, Dept. 245

POSTAGE Will BE PAID BY ...

IBM Corporation

Systems Development Division
Development laboratory

Rochester, Minnesota 55901

. ' ' ' ' '

fold

rrrnoo
"' International Business Machines Corporation

Data Processing Division

112 Eaet Post Road, White Plains, N.Y. 10601

FIRST ClASS

PERMIT NO. 387

ROCHESTER, MINN.

fold

C24- 1455-2

ITrn~
<Ii

International Business Machines Corporation

Data Processing Division

112 East Post Road, White Plains, N.Y. 10601

	IMG_0001.jpg
	IMG_0002.jpg
	IMG_0003.jpg
	IMG_0004.jpg
	IMG_0005.jpg
	IMG_0006.jpg
	IMG_0007.jpg
	IMG_0008.jpg
	IMG_0009.jpg
	IMG_0010.jpg
	IMG_0011.jpg
	IMG_0012.jpg
	IMG_0013.jpg
	IMG_0014.jpg
	IMG_0015.jpg
	IMG_0016.jpg
	IMG_0017.jpg
	IMG_0018.jpg
	IMG_0019.jpg
	IMG_0020.jpg
	IMG_0021.jpg
	IMG_0022.jpg
	IMG_0023.jpg
	IMG_0024.jpg
	IMG_0025.jpg
	IMG_0026.jpg
	IMG_0027.jpg
	IMG_0028.jpg
	IMG_0029.jpg
	IMG_0030.jpg
	IMG_0031.jpg
	IMG_0032.jpg
	IMG_0033.jpg
	IMG_0034.jpg
	IMG_0035.jpg
	IMG_0036.jpg
	IMG_0037.jpg
	IMG_0038.jpg
	IMG_0039.jpg
	IMG_0040.jpg
	IMG_0041.jpg
	IMG_0042.jpg
	IMG_0043.jpg
	IMG_0044.jpg
	IMG_0045.jpg
	IMG_0046.jpg
	IMG_0047.jpg
	IMG_0048.jpg
	IMG_0049.jpg
	IMG_0050.jpg
	IMG_0051.jpg
	IMG_0052.jpg
	IMG_0053.jpg
	IMG_0054.jpg
	IMG_0055.jpg
	IMG_0056.jpg
	IMG_0057.jpg
	IMG_0058.jpg
	IMG_0059.jpg
	IMG_0060.jpg
	IMG_0061.jpg
	IMG_0062.jpg
	IMG_0063.jpg

