META IX
A SYNTAX-ORIENTED COMPILER WRITING LANGUAGE

D. V. Schorre
UCLA Computing Facility

META II is a compiler writing language which
consists of syntax equations resembling Backus
normal form and into which instructions to output
assembly language commands are inserted. Com-
pilers have been written in this language for
VALGOL I and VALGOL II. The former is a simple
algebraic language designed for the purpose of
illustrating META II. The latter contains a
fairly large subset of ALGOL 60.

The method of writing compilers which is
given in detail in the paper may be explained
briefly as follows. Each syntax equation is trans-
lated into a recursive subroutine which tests the
input string for a particular phrase structure,
and deletes it if found. Backup is avoided by the
extensive use of factoring in the syntax equations.
For each source language, an interpreter is writ-
ten and programs are compiled into that interpret-~
ive language.

META II is not intended as a standard len-
guage which everyone will use to write compilers.
Rather, it is an example of a simple working lan-
guage which can give one a good start in design-
ing a compiler-writing compiler suited to his own
needs. Indeed, the META II compiler is written
in its own language, thus lending itself to modi-
fication. ’

History

The basic ideas behind META II were described
in a series of three papers by Schmidt,l Met-
<:a.1.:t’,2 and Schorre.3 These papers were present-
ed at the 1963 National A.C.M. Convention in
Denver, and represented the activity of the Work-
ing Group on Syntax-Directed Compilers of the Los
Angeles SIGPLAN. The methods used by that group
are similar to those of Glennie and Conway, but
differ in one lmportant respect. Both of these
researchers expressed syntax in the form of dia-
grams, which they subsequently coded for use on a
computer. In the case of META II, the syntax is
input to the computer in a notation resembling
Backus normal form. The method of syntax analy-
sis discussed in this paper is entirely different
from the one used by Irons® and Bastian.T A1l of
these methods can be traced back to the mathemat-
ical st of natural languages, as described by
Chomsky .

Syntax Notation

The notation used here is similar to the
meta language of the ALGOL 60 report. Probably
the main difference is that this notation can be
keypunched. Symbols in the target language are
represented as strings of characters, surrounded
by quotes. Metalinguistic variables have the
same form as identifiers in AILGOL, viz., a letter
followed by a sequence of letters or digits.

Items are written consecutively to indicate con-
catenation and separated by a slash to indicate
alternation. Each equation ends with a semicolon
vhich, due to keypunch limitations, is represented
by a period followed by a comma. An example of a
syntax equation is:

LOGICALVAIUE = '.TRUE' / '.FAISE' .,

In the versions of ALGOL described in this paper
the symbols which are usually printed in bold-
face type will begin with periods, for example:

.PROCEDURE .TRUE .IF

To indicate that a syntactic element is optional,
it may be put in alternation with the word .EMPTY.
For exemple:

SUBSECONDARY = '*' PRIMARY / .EMPTY .,
SECONDARY = PRIMARY SUBSECONDARY .,

By factoring, these two equations can be written
as & single equation.

SECONDARY = PRIMARY('** PRIMARY / .EMPTY) .,

Bullt into the META II language is the abili-
ty to recognize three basic symbols which are:

1. Identifiers -- represented by .ID,
2. Strings -~ represented by .STRING,
3. Numbers -- represented by .NUMBER.

The definition of identifier is the same in
META II as in ALGOL, viz., a letter followed by a
sequence of letters or digits. The definition of
a string is changed because of the limited char-
acter set available on the usual keypunch. In
ALGOL, strings are surrounded by opening and clos-
ing quotation marks, making it possible to have
quotes within a string. The single quotation mark
on the keypunch is unique, imposing the restric-
tion that a string in quotes can contain no other
quotation marks.

The definition of number has been radically
changed. The reason for this is to cut down on
the space required by the machine subroutine which
recognizes numbers. A number is considered to be
a string of digits which may include imbedded
periods, but may not begin or end with a period;
moreover, periods may not be adjacent. The use of
the subscript 10 has been eliminated.

Now we have enough of the syntax defining
features of the META II language so that we can
consider a simple example in some detail.

The example given here is a set of four syn-
tax equations for defining a very limited class of
algebraic expressions. The two operators, addi-
tion and multiplication, will be represented by +
and * respectively. Multiplication takes preced-
ence over addition; otherwise precedence is indi-
cated by parentheses. Some examples are:

Dl . 3-1

The syntax equations which define this class of
expressions are as8 follows:

EX3 =.10/ '(' BX1 ')’ .,
EX2 = EX3 ('*' EX2 / .EMPTY) .,
BX1l = BX2 ('+' EX1 / .BMPTY) .,

EX is an abbreviation for expression. The
last equation, which defines an expression of or-
der 1, is considered the main equation. The equa-
tions are read in this manmer. An expression of
order 3 is defined as an ldentifier or an open
parenthesis followed by an expression of order 1
followed by a closed parenthesis. An expression
of order 2 is defined as an expression of order 3,
which may be followed by a star which is followed
by an expression of order 2. An expression of
order 1 is defined as an expression of order 2,
which may be followed by a plus which is followed
by an expression of order 1.

Although sequences can be defined recursive-
ly, it is more convenient and efficient to have a
special operator for this purpose. For example,
we can define a sequence of the letter A as fol-
lows:

SEQA = $ 'A’ .,

The equations given previously are rewritten using
the sequence operator as follows:

EX3 = .ID / '(' BX) ') .,
EX2 = EX3 $ (**' EX3) .,
BX1 = EX2 $ ('+' EX2) .,

Output

Up to this point we have considered the
notation in META II which describes object lan-
guage syntax. To produce a compiler, output com-
mands are inserted into the syntax equations.
Output from a compiler written in META II is al-
ways in an assembly language, but not in the as-
sembly language for the 1401. It is for an in-
terpreter, such as the interpreter I call the
META II machine, which is used for all compilers,
_ or the interpreters I call the VALGOL I and VAL-
GOL II machines, which obviously are used with
their respective source languages. Each machine
requires its own assembler, but the main differ-
ence between the assemblers is the operation code
table. Constant codes and declarations may also
be different. These assemblers all have the same
format, which is shown below.

LABEL CODE ADDRESS
1- -6 8- -10 12- -70

An assembly language record contains either
& label or an op code of up to 3 characters, bdut
never both. A label begins in column 1 and may
extend as far as column TO0. If a record contains
an op code, then column 1 must be blank. Thus
labels may be any length and are not attached to
Instructions, but occur between instructions.

To produce output beginning in the op code

fleld, we write .OUT and then surround the infor-
mation to be reproduced with parentheses. A
string is used for literal output and an asterisk
to output the special symbol Just found in the
input. This is illustrated as follows:

BX3 = .ID .OUT('ID * %) / *(* BX1 *)' .,
w2 = EX3 § ('*' EX3 .OUT('MLT')) .,
EX1 = Ex2 $ ('+' EX2 .0UT('ADD')) .,

To cause output in the label field we write
.LABEL followed by the item to be output. For
example, 1f we want to test for an identifier
and output it in the label field we write:

.ID .LABEL *

The META II compiler can generate labels of
the form AOl, AO2, AO3, ... A99, BOl, ..., To
cause such a label to be generated, one uses *1
or *2. The first time *1 is referred to in any
syntax equation, & label will be generated and
assigned to it. This same label is output when-
ever ¥l is referred to within that execution of
the equation. The synmbol #2 works in the same way.
Thus a maximum of two different labels may be gen-
erated for each execution of any equation. Re-~
peated executions, whether recursive or externally
initiated, result in a continued sequence of gen-
erated labels. Thus all syntax equations con-
tribute to the one sequence. A typical example
in which labels are generated for branch commands
is now given.

IFSTATEMENT = '.IF' EXP '.THEN' .OUT('BFP' ¥1)
STATEMENT '.EISE' .OUT('B ' *2) .LABEL. *1L
STATEMENT .LABEL *2 .,

The op codes BFP and B are orders of the
VALGOL I machine, and stand for "branch false and
pop"” and "branch" respectively. The equation also
contains references to two other equations which
are not explicitly given, viz., EXP and STATEMENT.

VAIGOL I - A Simple Campiler Written in META II

Now we are ready for an example of a compil-
er written in META II. VALGOL I is an extremely
simple language, based on ALGOL 60, vhich has been
designed to illustrate the META II compiler.

The basic information about VALGOL I is giv-
en in figure 1 (the VAIGOL I compiler written in
META II) and figure 2 (order list of the VALGOL I
machine). A sample program is given in figure 3.
After each line of the program, the VALGOL I com-
mands which the campller produces from that line
are shown, as well as the absolute interpretive
language produced by the assembler. Figure U4 is
output from the sample program. Iet us study the
compiler written in META II (figure 1) in more
detail.

The identifier PROGRAM on the first line in-
dicates that this is the main equation, and that
control goes there first. The equation for PRI-
MARY is similar to that of EX3 in our previous
example, but here numbers are recognized and re-
produced with a "load literal” caommand. TERM is
what was previously EX2; and EXPl what was pre-~
viocusly EX1 except for recognizing minus for sub-
traction. The equation EXP defines the relation-
al operator "equal", which produces & value of O

Dl . 3"2

or 1 by making & camparison. Notice that this is
handled Just like the arithmetic operators bdbut
with a lower precedence. The conditional branch
commands, "branch true and pop" and "branch false
and pop", which are produced by the equations de-
fining UNTILST and CONDITIONALST respectively,
will test the top item in the stack and bdbranch
accordingly. :

The "assigmment statement" defined by the
equation for ASSIGNST is reversed from the con-
vention in AILGOL 60, i.e., .the location into
vwhich the computed value is to be stored is on
the right. Notice also that the equal sign is
used for the assignment statement and that period
equal (.=) is used for the relation discussed
above. This is because assignment statements are
more numerous in typical programs than equal com-
pares, and so the simpler representation is cho-
sen for the more frequently occurring.

The omission of statement labels from the
VALGOL I and VALGOL IT seems strange to most pro-
gremmers. This was not done because of any dif-
ficulty in their implementation, but because of a
dislike for statement 1labels on the part of the
author. I have programmed for several years with-
out using a single label, so I know that they are
superfluous from a practical, as well as from a
theoretical, standpoint. Nevertheless, it would
be too much of a digression to try to justify
this point here. The "until statement" has been
added to facilitate writing loops without labels.

The "conditional" statement is similar to
the one in ALGOL 60, but here the "else" clause

is required.
The equation for "input/output", IOST, in-
volves two commands, "edit" and "print". The

words EDIT and PRINT do not begin with periods so
that they will look like subroutines written in
code. "EDIT" copies the given string into the
print aree, with the first character in the print
position which is camputed from the given expres-
sion. "PRINT" will print the current contents of
the print area and then clear it to blanks. Giv-
ing a print command without previous edit com-
mands results in writing & blank line.

IDSP and IDSEQ are given to simplify the
syntax equation for DEC (declaration). Notice in
the definition of DEC that a branch is given
around the data.

From the definition of BLOCK it can be seen
that what is considered a compound statement in
ALGOL 60 is, in VALGOL I, a special case of a block
which has no declaration.

In the definition of statement, the test
for an IOST precedes that for an ASSIGNST. This
1s necessary, because if this were not done the
words PRINT and EDIT would be mistaken as identi-
fiers and the campiler would try to translate
"input/output” statements as if they were "assign-
ment” statements.

Notice that a PROGRAM is a block and that a
standard set of commands is output after each pro-
gram. The "halt" command causes the machine to
stop on reaching the end of the outermost block,
which is the program. The operation code SP is
generated after the "halt" command. This is a
completely 1UOl-oriented code, which serves to
set a word mark at the end of the program. It

would not be used if VALGOL I were implemented on
a fixed word-length machine.

How the META TI Compiler Was Written

Now we came to the most interesting part of
this project, and consider how the META II cam-
piler was written in its own language. The in-
terpreter called the META II machine is not a
much longer 1401 program than the VAIGOL I ma-
chine. The syntax equations for META II (figure
5) are fewer in mmber than those for the VALGOL
I machine (figure 1).

The META II compiler, which is an interpret-
ive program for the META II machine, takes the
syntax equations given in figure 5 and produces an
assembly language version of this same interpret-
ive program. Of course, to get this started, I
had to write the first compiler-writing compiler
by hand. After the program was running, it could
produce the same program as written by hand. Some-
one always asks if the compiler really produced
exactly the program I had written by hand and I
have to say that it was "almost" the same pro-
gram. I followed the syntax equations and tried
to write just what the campiler was going to pro-
duce. Unfortunately I forgot one of the redun-
dant instructions, so the results were not quite
the same. Of course, when the first machine-
produced compiler caompiled itself the second time,
it reproduced itself exactly.

The compiler originally written by hand was
for a language called META I. This was used to
implement the improved compiler for META II.
Sometimes, when I wanted to change the metalan-
guage, I could not describe the new metalanguage
directly in the current metalanguage. Then an
intermediate language was created --one which
could be described in the current langusge and in
which the new language could be described. I
thought that it might sometimes be necessary to
modify the assembly language output, but it seems
that it is always possible to avoid this with the
intermediate language.

The order list of the META II machine is
given in figure 6.

All subroutines in META II programs &re re-
cursive. When the program enters a subroutine a
stack is pushed down by three cells. One cell
is for the exit address and the other two are for
labels which may be generated during the execu-
tion of the subroutine. There is a switch which
may be set or reset by the instructions which re-
fer to the input string, and this is the switch
referred to by the conditional branch commands.

The first thing in any META II machine pro-
gram is the address of the first instruction.
During the initialization for the interpreter,
this address is placed into the instruction
counter,,

VAIGOL TI Written in META II

VAIGOL II is an expansion of VALGOL I, and
serves as an illustration of a fairly elaborate
programming language implemented in the META II
system. There are several features in the VAL-
GOL II machine which were not present in the

Dl 3 3-3

VALGOL I machine, and which require same explana-
tion. In the VALGOL II machine, addresses as well
as numbers are put in the stack. They are marked
appropriately so that they can be distingulshed at
execution time.

The main reason that addresses are allowed
in the stack is that, in the case of a subscripted
variable, an address is the result of a computa-

~tion. In an assignment statement each left member
i8 compiled into a sequence of code which leaves
an address on top of the stack. This is done for
simple variables as well as subscripted variables,
because the philosophy of this compiler writing
system has been to campile everything in the most
general way. A variasble, simple or subscripted,
is always campiled into a sequence of instructions
which leaves an address on top of the stack. The
address is not replaced by its contents until the
actual value of the variable is needed, as in an
arithmetic expression.

A formal parameter of a procedure is stored
either as an address or as a value which is com-
puted when the procedure is called. It is up to
the load command to go through any number of in-
direct address in order to place the address of a
number onto the stack. An argument of a procedure
is always an algebraic expression. In case this
expression is a variable, the value of the formal
parameter will be an address computed upon enter-
ing the procedure; otherwise, the value of the
formal parameter will be a number computed wupon
entering the procedure.

The .operation of the load command is now
described. It causes the given address to be put
on top of the stack. If the content of this top
item happens to be another address, then it is
replaced by that other address. This continues

" until the top item on the stack 1s the address of
something which is not an address. This allows
for formal perameters to refer to other formal
parameters to any depth.

No distinction is made between integer and
real numbers. An integer is just a real number
whose digits right of the decimal point are zero.
Variables initially have a value called "un-
defined", and any attempt to use this value will
be indicated as an error.

An assigmment statement consists of any
number of left parts followed by & right part.

For each left part there is compiled & sequence of
commands which puts an address on top of the stack.
The right part is campiled into a sequence of in-
structions which leaves on top of the stack either
a number or the address of & number. Following
the instruction for the right part there is a se-
quence of store commands, one for each left part.
The first command of this sequence is "save and
store”, and the rest are "plain" store cammands.
The "save and store" puts the mumber which is on
top of the stack (or which is referred to by the
address on top of the stack) into a register
called SAVE. It then stores the contents of SAVE
in the address which is held in the next to top
position of the stack. Finally it pops the top
two items, which it has used, out of the stack.
The number, however, remains in SAVE for use by
the following store commands. Most assigmment
statements have only one left part, so "plain”

store commands are seldam produced, with the re-
sult that the number put in SAVE is seldom used
again.

The method for calling a procedure can be
explained by reference to illustrations 1 and 2.
The arguments which are in the stack are moved to
their place at the top of the procedure. If the

Function

Arguments

b Word of one blank char-
acter to mark <the end
of the arguments.

esececes Body. Branch commands

cause control to go
around data stored in
this area. Ends with

R a "return” command.

cvsscsvse

ssssevae

Illustration 1

Storage Map for VALGOL II Procedures

XXX Arguments in reverse order
XX00KXKX
posvseved

XXX Fleg

XXX Address of
teesessee prOOedure

Exit X

essesses
esssesee

Stack before executing
the call instruction

Stack after executing
the call instruction

Illustration 2

Map of the Stack Relating to Procedure Calls

number of arguments in the stack does not corre-
spond to the number of arguments in the procedure,
an error is indicated. The "flag" in the stack
works like this. In the VALGOL II machine there
is a flag register. To set & flag in the stack,
the contents of this register is put on top of
the stack, then the address of the word above the
top of the stack 1s put into the flag register.
Initially, and whenever there are no flags in the
stack, the flag register contains blanks. At
other times it contains the address of the word
in the stack which 1s just above the uppermost
flag. Just before a call instruction is executed,
the flag register contains the address of the word
in the stack which is two above the word contain-
ing the address of the procedure to be executed.
The call instruction picks up the arguments from
the stack, beginning with the one stored just

Dl 3 3-4

above the flag, and continuing to the top of the
stack. Arguments are moved into the appropriate
places at the top of the procedure being called.
An error message 1s given if the number of argu-
ments in the stack does not correspond to the
number of places in the procedure. Finally the
old flag address, which is just below the pro-
cedure address in the stack, is put in the flag
register. The exit address replaces the address
of the procedure in the stack, and all the argu-
nments, as well as the flag, are popped out.

There are just two op codes which affect the flag
register. The code "loed flag" puts a flag into
the stack, and the code "call" takes one out.

The library function "WHOLE" truncates a
real number. It does not convert a real number
to an integer, because no distinction is made be-
tween them. It is substituted for the recommend-
ed function "ENTIER" primarily because truncation
takes fewer machine instructions to implement.
Also, truncation seems to be used more frequently.
The procedure ENTIER can be defined in VALGOL IT
as follows:

.PROCEDURE ENTIER(X) .,
.IF O .L= X .THEN WHOLE (X) .ELSE
.IF WHOLE(X) = X .THEN X .ELSE
WHOLE(X) -1

The "for statement" in VALGOL II is not the
same as 1t is in AIGOL. Exactly one list element
is required. The "step .. until" portion of the
element is mandatory, but the "while" portion may
be added to terminate the loop Immediately upon
same condition. The iteration continues so long
as the value of the variable is less than or
equal to the maximum, d1irrespective of the sign
of the increment. Illustration 3 is an example
of a typical "for statement". A flow chart of
this statement is given in illustration k4.

.FOR I = 0 .STEP 1 .UNTIL N .DO
(statement)
SET Set switch to indicate first
A91 time through.
1D I
FLP] Test for first time through.
BFP A92
DL, O
SST] Initialize variable.
B A93
A%2
IDL 1] Increment variable.
ADS
A93
RSR Compare variable to maximum.
D N
1EQ
BFP A9h4
(statement)
RST Reset switch to indicate not
first time through.
B A91
A9L

t

Set switch
to 1indicate
first time
through

First time?

Initialize Increment
variable variable
1-1I I+1-1

L. -

Compare

variable to “\FALSE

Reset switch
to indicate
not first
time through

- J v

Illustration 3

Compilation of a typical "for statement”
in VAIGOL II

Illustration 4

Flow chart of the "for statement"
given in figure 12

Figure T is a listing of the VALGOL II com-
pller written in META II. Figure 8 gives the or-
order list of the VALGOL II machine. A sample pro-
gram to teke a determinant is given in figure 9.

Backup vs. No Backup

Suppose that, upon entry to a recursive
subroutine, which represents some syntax equation,
the position of the input and output are saved.
When some non-first term of a component is not
found, the compiler does not have to stop with an
indication of a syntax error. It can back-up the
input and output and return false. The advantages
of backup are as follows: '

1. It is possible to describe languages,

using backup, which cannot be described

without backup.

2. Even for a language which can be de-
sceribed without backup, the syntax equations

can often be simplified when backup is al-
lowed.

Dl. 3-5

The advantages claimed for non-backup are as
follows:

1. Syntax analysis is faster.

2. It is possible to tell whether syntax
equations will work Just by examining them,
without following through numerous examples.

The fact that rather sophisticated languages
such as ALGOL and COBOL can be implemented without
backup is pointed out by various people, including
Conway,? and they are aware of the speed advant -
ages of so doing. I have seen no mention of the
second advantage of no-backup, so I will explain
this in more detail.

Basically one writes alternations in which
each term begins with a different symbol. Then it
is not possible for the compiler to go down the
wrong path. This is made more complicated because
of the use of ".EMPTY". An optional item can
never be followed by something that bvegins with
the same symbol it begins with.

The method described above 1s not the only
way in which backup can be handled. Variations
are worth considering, as a way may be found to
have the advantages of both backup and no-backup.

Further Development of META Languages

As mentioned earlier, META II is not present-
ed as a standard language, but as a point of de-
parture fram which a user may develop his own META
language. The term "META Language,” with "META"
in capital letters, is used to denote any compiler-
writing language so developed.

The language which Schmidtl implemented on
the PDP-1 was based on META I. He has now imple-
mented an improved version of this language for a
Beckman machine.

Rutman® has implemented LOGIK, & compiler
for bit-time simulation, on the T090. He uses &
META language to compile Boolean expressions into
efficient machine code. Schneider and JohnsonlO
have implemented META 3 on the IBM TO94, with the
goal of producing an ALGOL compiler which gener-
ates efficient machine code. They are planning a
META language which will be suitable for any block
structured language. To this compiler-writing
language they give the name META 4 (pronounced
metaphor).

References

1. Scmidt, L.,
bol Menipulator for Heuristic Translation,”
ACM Natl. Conf., Denver, Colo.

2. Metcalfe, Howard, "A Parameterized Com-
piler Based on Mechanical Lingulsties," 1963 ACM
Natl. Conf., Denver, Colo.

3. Schorre, Val, "A Syntax - Directed
SMALGOL for the 1401," 1963 ACM Natl. Conf., Den-
ver, Colo.

4. Glennie, A., "On the Syntax Machine and
the Construction of a Universal Compiler,” Tech.
Report No. 2, Contract NR O49-141, Carnegie Inst.

of Tech., July, 1960.

"Implementation of a Sym-
1963

.

5. Conway, Melvin E., "Design of a Separable
Transition-Diagram Compiler," Comm. ACM, July 1963.

6. Irons, E. T., The Structure and Use of
the Syntax -Directed Compiler,” Annual Review in
Automatic Programming, The Macmillan Co., New
York.

7. Bastian, lewls, "A Phrase-Structure lan-
guage Translator,” AFCRL-Rept-62-549, Aug. 1962.

8. Chomsky, Noam,
Mouton and Co., Publishers,
lands.

9. Rutman, Roger, "IOGIK, A Syntax Directed
Campiler for Computer Bit-Time Simulation," Master
Thesis, UCLA, August 196kL.

10. Schneider, F. W., and G. D. Johnson, "A
Syntax-Directed Compiler-Writing Compiler to Gen-
erate Efficient Code," 1964 ACM Natl. Conf.,
Philadelphia.

"Syntax Structures ,"
The Hague, Nether-

Dl) 3-6

THE VALGOL 1 COMPILER WRITTEN IN META Il LANGUAGE
FIGURE 1

«SYNTAX PROGRAM

PRIMARY = oID «OUT(SLD ¢ #) /
«NUMBER «OQUT('LDLt #1 /
10 EXP V)0 oy

TERM = PRIMARY S(1#0 PRIMARY «OQUT{'MLT!} } oy

EXPl = TERM ${*+' TERM +OUT('ADD') /
1<% TERM +OUT{¢SUB')) o+

EXP = EXP1l ['e®® EXPl +OUT{'EQUT) / +EMPTY) o»
ASSIGNST = EXP 1=t oID +OUT('ST ' #) o

UNTILST = "oUNTIL' +LABEL #1 EXP 'eDO* <OUT(tBTP! #2)
ST «0UT('8 * #1) +LABEL #2 o,

CONDITIONALST = 1,IF' EXP *«THEN' «QUTI{'BFP' #1)
ST 'ELSE® +OUT('8 ¢ #2) JLABEL *1
ST «LABEL #2 o,

10ST = SEDIT' *(* EXP *s* oSTRING
«OUT(EDT® #))¢ /
SPRINT® OQUT('PNT!} o

IDSEQL = oID oLABEL % +OUTI'BLK 1) s
IDSEQ = IDSEQ] S('ys* IDSEQL) 4+»
DEC = ',REAL' «OUT('B * #1) IDSEQ <LABEL #1 .

BLOCK = 9.BEGIN' IDEC ‘a9’ / +EMPTY)
ST S{tes? ST) '.END! o9

ST = JOST / ASSIGNST / UNTILSY /
CONDITIONALST / BLOCK o

PROGRAM = BLOCK +OUT('HLT!)
eOUT('SP 1%) <OUTI'END*} o»

«END

ORDER LIST OF THE VALGOL I MACHINE
FIGURE 2

MACHINE CODES
LD AAA LOAD PUT THE CONTENTS OF THE ADDRESS AAA
ON TOP OF THE STACKs
LOL NUMBER LOAD LITERAL PUT THE GIVEN NUMBER ON TOP OF
THE STACKe
ST AAA STORE STORE THE NUMBER WHICH IS ON TOP
OF THE STACK INTO THE ADDRESS AAA
AND POP UP THE STACK.
ADD ADD REPLACE THE TWO NUMBERS WHICH ARE
ON TOP OF THE STACK WITH THEIR
SUMe
suB SUBTRACT SUBTRACT THE NUMBER WHICH IS ON
TOP OF THE STACK FROM THE NUMBER
WHICH IS NEXT TO THE TOP, THEN
REPLACE THEM BY THIS DIFFERENCE.
MLT MULTIPLY REPLACE THE TWO NUMBERS WHICH ARE
ON TOP OF THE STACK WITH THEIR
PRODUCT»
EQu EQUAL COMPARE THE TWO NUMBERS ON TOP OF
THE STACKe REPLACE THEM BY THE
INTEGER 1» IF THEY ARE EQUALs OR BY
THE INTEGER Os IF THEY ARE UNEQUAL.

8 ARA BRANCH BRANCH TO THE ADDRESS AAA.

BFP AAA BRANCH FALSE BRANCH TO THE ADDRESS AAA IF THE
AND POP TOP TERM IN THE STACK IS THE
INTEGER Os OTHERWISEs CONTINUE
IN SEQUENCE., IN EITHER CASEs
POP UP THE STACK.
BTP AAA BRANCH TRUE BRANCH TO THE ADDRESS AAA IF THE

AND POP TOP TERM IN THE STACK IS NOT THE
INTEGER Os¢ OTHERWISE+ CONTINUE
IN SEQUENCE. IN EITHER CASE,
POP UP THE STACKe.

EDT STRING EDIT ROUND THE NUMBER WHICH 1S ON TOP OF

THE STACK TO THE NEAREST INTEGER Ne
MOVE THE GIVEN STRING INTO THE

PRINT AREA 50 THAT ITS FIRST CHAR-
ACTER FALLS ON PRINT POSITION No

IN CASE THIS WOULD CAUSE CHARACTERS -
TO FALL OUTSIDE THE PRINT AREAs NO

MOVEMENT TAKES PLACE.

PNT PRINT PRINT A LINEs THEN SPACE AND CLEAR

THE PRINT AREA.

HLT HALT HALT.
CONSTANT AND CONTROL CODES

SP N SPACE N = 1--9, CONSTANT CODE PRODUCING

N BLANK SPACES.

BLK NNN BLOCK PRODUCES A BLOCK OF MNN EIGHT

CHARACTER WORDSe

END END DENOTES THE END OF THE PROGRAMe

D1.3-7

A PROGRAM AS COMPILED FOR THE VALGOL 1 MACHINE
FIGURE 3

«BEGIN
oREAL X a9 0 = X o9
B A0l 0000 G
X 0004
BLK 001 0004
Aol 0012
LoL 0 0012 A
sT X o021 6
SUNTIL X o= 3 +DO <BEGIN
AG2 0025
LD X 0025 0
LbL 3 0029 A
EQU 0038 F
BTP AO3 0039 K
EDITE X¥X % 10 + 1y v#%) 49 PRINT oy X + Oel = X
L0 X 0043 O
LD X 0047 0
MLT 0051 E
LoL 10 0052 A
MLT 0061 E
LoL 1 0062 A
ADD 0071 C
EDT Olver 0072 1
PNT 0074 0
L x 0075 0
LDL 0.1 0079 A
ADD 0088 C
ST X 0089 B
<END
8 AQ2 0093 G
A03 0097
+END
HLT 0097 J
sp 0098
END 0099

OUTPUT FROM THE VALGOL I PROGRAM GIVEN IN FIGURE 3
FIGURE 4

0012

0004

0004

0097

0004
0004

0004

0004
0025

R RETURN
THE META 11 COMPILER WRITTEN IN ITS OWN LANGUAGE
FIGURE 3

«SYNTAX PROGRAM

QUT1 = *&10 LQUTI('GN1') / *#20 LOUT{'GN2'} /

THY LOUTLICTIY) / «STRING «OUT(SCL ¢ #)oy SET SET

QUTPUT = (1,00T* ¢(* 8 AAA BRANCH

$ OUTL %) / *oLABEL' «OUT('LB*) QUTL} «OUT(IQUTt) o

EX3 = oID +OUT ('CLL' #) / STRING BT AAA BRANCH IF TRUE

«OUT(*TST? #}) / 1,1D* +OUT(*ID*) /

*«NUMBER® +OUT(*NUM'} /

P«STRING®' <OUT('SR') 7 2{* EX1 *}* /

MPTY! SOUT{1SETY) / BF AAA BRANCH IF FALSE
'S¢ JLABEL #1 EX3

«OUT (*BT * #1) OUT('SET?*)es

EX2 = (EX3 oOQUT{'BF * #1) / OUTPUT) BE BRANCH TO ERROR
S(EX3 +OUT('BE') / OUTPUT) IF FALSE
oLABEL #1 o9

CL STRING COPY LITERAL
EX1 = EX2 ${'/% «OUTI'BT + #1} EX2)
oLABEL #1 o3

ST = oID oLABEL ® '=¢ EX]
tes! «OUTI*R*Ies (43 COPY INPUT

PROGRAM = 1 ,SYNTAX' +ID +OUTI{'ADR' #)
$ ST *4END' OQUT{'END*)es

RETURN TO THE EXIT ADDRESS: POPPING
UP THE STACK BY ONE OR THREE CELLS
ACCORDING TO THE FLAGe IF THE
STACK 1S5 POPPED BY ONLY ONE CELLs
THEN CLEAR THE TOP TWO CELLS TO
BLANKSs BECAUSE THEY WERE BLANK
WHEN THE SUBROUTINE WAS ENTERED.

SET BRANCH SWITCH ON.

BRANCH UNCONDITIONALLY TO LOCATION
AAAo

BRANCH TO LOCATION AAA IF SWITCH IS
ONe OTHERWISEs CONTINUE IN SEQ~
UENCE.

BRANCH TO LOCATION AAA IF SWITCH
1S OFFe OTHERWISE» CONTINUE IN
SEQUENCE.

HALT IF SWITCH 1S OFFs OTHERWISEs
CONTINUE IN SEQUENCE.

OQUTPUT THE VARIABLE LENGTH STRING
GIVEN AS THE ARGUMENT. A BLANK
CHARACTER WILL BE INSERTED IN THE
QUTPUT FOLLOWING THE STRINGe

OUTPUT THE LAST SEQUENCE OF CHAR-
ACTERS DELETED FROM THE INPUT
STRINGe THIS COMMANG MAY NOT FUNC=~
TION PROPERLY IF THE LAST COMMAND
WHICH COULD CAUSE DELETION FAILED

JEND TO 0O SO«
GN1 GENERATE 1 THIS CONCERNS THE CURRENT LABEL 1
CELL» IE.» THE NEXT TO TOP CELL IN
THE STACKs WHICH IS EITHER CLEAR OR
CONTAINS A GENERATED LABELe IF
CLEARs GENERATE A LABEL AND PUT iT
INTO THAT CELLe WHETHER THE LABEL
HAS JUST BEEN PUT INTO THE CELL OR
WAS ALREADY THEREs OUTPUT 1T,
FINALLY, INSERT A BLANK CHARACTER
IN THE OUTPUT FOLLOWING THE LABEL.
GN2Z GENERATE 2 SAME AS GNls EXCEPT THAT IT CON-
CERNS THE CURRENT LABEL 2 CELLs
1Ee» THE TOP CELL IN THE STACKe
L8 LABEL SET THE OUTPUT COUNTER TO CARD
COLUMN 1.
ouT ouTPUT PUNCH CARD AND RESET OUTPUT COUNTER
TO CARD COLUMN 8.
Pigure 6.2
ORDER LIST OF THE META 11 MACHINE CONSTART AND CONTROL CODES
FIGURE 6 g
ADR IDENT ADDRESS PRODUCES THE ADDRESS WHICH IS
ASSIGNED TO THE GIVEN IDENTIFIER AS
MACHINE CODES A CONSTANT.
TST STRING TEST AFTER DELETING INITIAL BLANKS IN END END DENOTES THE END OF THE PROGRAM.
THE INPUT STRINGs CONPARE IT TO THE
STRING GIVEN AS ARGUMENT. IF THE
COMPARISON IS MET» DELETE THE
MATCHED PORTION FROM THE INPUT AND
SET SWITCH. IF NOT MET, RESET
SWITCH
Figure 6.3
0 IDENTIFIER AFTER DELETING INITIAL BLANKS IN
THE INPUT STRINGe TEST IF IT BEGINS
WITH AN IDENTIFIERs IEe» A LETTER
FOLLOWED BY A SEQUENCE OF LETTERS
AND/OR DIGITSs IF SO» DELETE THE
IDENTIFIER AND SET SWITCHa IF NOT,
RESET SWITCH,
NuM NUMBER AFTER DELETING INITIAL BLANKS IN
THE INPUT STRINGs TEST IF IT BEGINS
WITH A NUMBER. A NUMBER IS A
STRING OF DIGITS WHICH MAY CONTAIN
IMBEDED PERIODS, BUT MAY NOT BEGIN
OR END WITH A PERIOD. MOREOVER» NO
TWO PERIODS MAY BE NEXT TO ONE
ANOTHER. IF A NUMBER 15 FOUND»
DELETE IT AND SET SWITCHe IF NOT,
RESET SWITCH.
SR STRING AFTER DELETING INITIAL BLANKS IN

THE INPUT STRINGs TEST IF IT BEGINS
WITH A STRINGs IEes A SINGLE QUOTE
FOLLOWED BY A SEQUENCE OF ANY
CHARACTERS OTHER THAN SINGLE QUOTE
FOLLOWED BY ANOTHER SINGLE QUOTE.
IF A STRING IS FOUNDy DELETE IT AND
SET SWITCHe IF NOT» RESET SWITCHe

CLL AAA CALL ENTER THE SUBROUTINE BEGINNING IN
LOCATION AAA., IF THE TOP TWO TERMS
OF THE STACK ARE BLANKs PUSH THE
STACK DOWN 8Y ONE CELLe OTHERWISE,
PUSH IT DOWN BY THREE CELLSe SET A
FLAG IN THE STACK TO INDICATE
WHETHER 1T -HAS BEEN PUSHED BY ONE
OR THREE CELLSe. THIS FLAG AND THE
EXIT ADDRESS GO INTO THE THIRD
CELLs CLEAR THE TOP TWO CELLS TO
BLANKS TO INDICATE THAT THEY CAN
ACCEPT ADDRESSES WHICH MAY BE
GENERATED WITHIN THE SUBROUTINEe

Pigure 6.1 D1.3-8

VALGOL I1 COMPILER WRITTEN IN META Il DEC = TYPEDEC / ARRAYDEC / PROCEDURE o»

FIGURE 7
BLOCK = t4BEGIN®' «OUT('B 1 #1) S(DEC 'es')
«LABEL #1 ST 3('es' ST) *+END®
+«SYNTAX PROGRAM (elD 7 oEMPTY) o0
ARRAYPART = %{e? EXP e}? +OUT('AIA'} oo UNCONDITIONALST = I10CALL / ASSIGNCALLST /
BLOCK o
CALLPART & *(' LOUT('LDF*} (EXP S(vs* EXP) /
oEMPTY} *}¢ 4OUTL'CLLY) o4 CONDST = *<IF? EXP '«THEN' «QUT('BFP? #])
(UNCONDITIONALST {'+ELSE® OUT('8 ' #2)
VARIABLE = oID +OUTI'LD * ®) (ARRAYPART / EMPTY) +» oLABEL #1 ST «LABEL #2 7/ +EMPTY
oLABEL #1) / (FORST / UNTILST)
PRIMARY = SWHOLE!' *(' EXP *)¢ +OUT('WHLY} / oLABEL #1) oy
oID <OUT{!LD ' #) (ARRAYPART / CALLPART / SEMPTY) /
$eTRUE? LOUTI'SET?) /7 ',FALSE' +OUT(*RSTY) / ST = CONDST / UNCONDITIONALST / FORST 7/
0 ¢ JOUTI'RST?) 7 '1 * JOUT('SET") / UNTILST 7 «EMPTY oy
o+NUMBER «OUT{'LDL! #) /
e EXP)Y ey PROGRAM = BLOCK

«OUTLIHLT?) oOUTI'SP 1') oOUTI('ERD'} ey
TERM = PRIMARY $ ('#' PRIMARY <OUT('MLT!) /
471 PRIMARY «OQUT{'DIV') / sEND
Ya/e% PRIMARY +OUTI'DIV!) <OUT('WHL')) o9

EXP2 s t=¢ TERM +OUT{'NEG') /
¥+t TERM / TERM o» rigure 7.3
EXPl = EXP2 ${'+' TERM OUT{tADD?) /
t~t TERM +OUT{'SUBI)) ay

RELATION = EXP1l {

*olmt EXP1 oOUT('LEQ?) 7
v EXP1 +OUTIILES®) /
 EXP1 +OUT('EQU'Y /
¢ EXPl «OUT('EQU?') OUT(*NOT'} /
1,G=t EXP1 +OUT('LES') +~OUTIINOT) /
146G EXPLl «OUTC(TLEQ'} 4OUTC(TNOT!) /
«EMPTY) o0

BPRIMARY = Ye=! RELATION +OUT{'NOT*) /
RELATION o9

BTERM = BPRIMARY $ {('en' <OUT{'BF ' #1)
+OUT{1POP) BPRIMARY)
oLABEL #1 +4

BEXP1 = BTERM $('eV' JOUT{'BT ' #1)
«OUT('POP¢) BTERM}
«LABEL #1 o4

IMPLICATION] = 1.IMPt LOUT(INOT)
«OUT('BT * ®1) LOUT('POP')
BEXP1 oLABEL *1 «,

IMPLICATION = BEXP1 $ IMPLICATION] o»

Pigure 7.1

EQUIV = IMPLICATION S{'+EQ* JOUT('EQU')) 4

EXP = 1.IF' EXP 1+THEN®' +OUT('BFPY #1)
EXP +OUT('B ' #2) JLABEL *1
teELSE® EXP +LABEL #2 /

EQUIV 4

ASSIGNPART = 'sv EXP (ASSIGNPART +OUT('ST!) /
«EMPTY OUT('SST') } o

ASSIGNCALLST = +ID «OUT('LD * #) (ARRAYPART ASSIGNPART /
ASSIGNPART 7 (CALLPART / <EMPTY
«OUT(PLDF?) OUT(*CLLY))
SOUTIIPOPI)) oy

UNTILST = ¢,UNTIL' +LABEL #1 EXP
teDO* JQUT('BTPY #2) ST
sOUT(1B * #1) JLABEL #2 o»

WHILECLAUSE = ¢ WHILE® +OUT('BF * #1)
SOUT(*POPY) EXP oLABEL %1 / +EMPTY o4

FORCLAUSE = VARIABLE '=! JOUT('FLP')
+OUT('BFP' #1) EXP '4STEP!®
+OUTLISST?) <QUTL¢B 1+ #2)
oLABEL #1 EXP *oUNTIL' +QUT(tADSH)
oLABEL #2 +OUV{'RSR') EXP
+OUTL'LEQY) WHILECLAUSE 'eDO' oy

FORST = 'oFOR' +OUT(ISET') <LABEL *1
FORCLAUSE +QUT(tBFP' #2) ST
+OUT(*RST*} +OUT('B *+ #1)
oLABEL #2 4,

TOCALL = *READ' *(* VARIABLE '+ EXP 1) OUT('RED'} /
WRITE' *{*¢ VARIABLE %5 EXP %)% JOUT{'WRT') /
TEDITY (' EXP ' +STRING
+OUTLIEDT® #))0
SPRINT' +QUT(IPNT') /

CEJECTY «OQUTI'EITI o

IDSEQL = +ID +LABEL® ,OUT('BLK 1%) «»
IDSEQ = IDSEQL $('s" IDSEQL) e
TYPEDEC = ¢, REAL' IDSEQ ey

ARRAYL = oID oLABEL # *(e% 90' 'oe' JNUMBER
«OUT(IBLK 1%) «OUT('BLK?! #) te)? 4

ARRAYDEC = 1,ARRAY' ARRAY1 S({ 'y ARRAYL) o»

PROCEDURE » ¢.PROCEDURE! oID oLABEL #*
+LABEL ®1 +OUTU('BLK 1¢) *(°¢
(IDSEQ 7 «EMPTY})0 LOUT{ISP 11) %4y

ST <OUT(IR * *1) s

Figure 7.2 D1.3-9

LD AAA
LOL NUMBER
SET

RST

st

ADS

SsT

RSR

ADD

sue

MLT

o1V

NEG

WHL

NOT

LEQ

LES

EQu

BT AAA

BF AAA

BTP AAA

BFP AAA

ORDER LIST OF THE VALGOL I1 MACHINE
FIGURE 8

MACHINE CODES

LOAD

LOAD LITERAL

SET

RESEY

STORE

ADD TO STORAGE
NOTE 1

SAVE AND STORE
NOTE 1

RESTORE

ADD
NOTE 2

SUBTRACT
NOTE 2

MULTIPLY
NOTE 2

DIVIDE
NOTE 2

PUT THE ADDRESS AAA ON TOP OF THE
STACKe

PUT THE GIVEN NUMBER ON TOP OF
THE STACK.

PUT THE INTEGER 1 ON TOP OF THE
STACK.

PUT THE INTEGER 0 ON TOP OF THE
STACK.

STORE THE CONTENTS OF THE REGISTER»
STACKl» IN THE ADDRESS WHICH IS ON
TOP OF THE STACKs THEN POP UP THE
STACK.

ADD THE NUMBER ON TOP OF THE STACK
TO THE NUMBER WHOSE ADDRESS IS NEXT
TO THE TOPs AND PLACE THE SUM IN
THE REGISTERs STACKle THEN STORE
THE CONTENTS OF THAT REGISTER IN
THAT ADDRESSs AND POP THE TOP TWO
ITEMS OUT OF THE STACK.

PUT THE NUMBER ON TOP OF THE STACK
INTO THE REGISTERs STACKle THEN
STORE THE CONTENTS OF THAT REGISTER
IN THE ADDRESS WHICH IS THE NEXT

TO TOP TERM OF THE STACK. THE TopP
TWO ITEMS ARE POPPED OUT OF THE
STACK.

PUT THE CONTENTS OF THE REGISTERs
STACKls ON TOP OF THE STACKe

REPLACE THE TWO NUMBERS WHICH ARE
ON TOP OF THE STACK WITH THEIR
SUMe

SUBTRACT THE NUMBER WHICH IS ON
TOP OF THE STACK FROM THE NUMBER
WHICH 15 NEXT TO THE TOP» THEN

REPLACE THEM BY THIS DIFFERENCE.

REPLACE THE TWO NUMBERS WHICH ARE
ON TOP OF THE STACK WITH THEIR
PRODUCT.

DIVIDE THE NUMBER WHICH IS NEXT 7O
THE TOP OF THE STACK BY THE NUMBER

WHICH 1S ON TOP OF THE STACKs THEN
REPLACE THEM BY THIS QUOTIENT,.

Figure 8.1

NEGATE

LESS THAN OR EQUAL
NOTE 2

LESS THAN
NOTE 2

EQUAL
NOTE 2

BRANCH
BRANCH TRUE
BRANCH FALSE
BRANCH TRUE
AND POP

BRANCH FALSE
AND POP

CHANGE THE SIGN OF THE NUMBER ON
TOP OF THE STACKe
TRUNCATE THE NUMBER WHICH 1S ON
TOP OF THE STACKe

IF THE TOP TERM IN THE STACK IS THE
INTEGER Os THEN REPLACE IT WITH THE
INTEGER 1» OTHERWISE. REPLACE IT
WITH THE INTEGER O

IF THE NUMBER WHICH 1S NEXT TO

THE TOP OF THE STACK 1S LESS THAN
OR EQUAL TO THE NUMBER ON TOP OF
THE STACKs THEN REPLACE THEM WITH
THE INTEGER le OTHERWISEs REPLACE
THEM WITH THE INTEGER Oe

IF THE NUMBER WHICH IS NEXT TO

THE TOP QF THE STACK 1S LESS THAN
THE NUMBER ON TOP OF THE STACK,
THEN REPLACE THEM WITH THE

INTEGER 1e OTHERWISEs REPLACE THEM
WITH THE INTEGER V.

COMPARE THE TWO NUMBERS ON TOP OF
THE STACKs REPLACE THEM BY THE
INTEGER 1y IF THEY ARE EQUAL» OR BY
THE INTEGER 0» IF THEY ARE UNEQUAL.

BRANCH TO THE ADDRESS AAA.

BRANCH TO THE ADDRESS AAA IF THE
TOP TERM IN THE STACK IS NOT THE

INTEGER O+ OTHERWISEs CONTINUE
IN SEQUENCEs DO NOT POP UP THE
STACK.

BRANCH TO THE ADDRESS AAA IF THE
TOP TERM IN THE STACK IS THE

INTEGER O¢ OTHERWISEs CONTINUE
IN SEQUENCE. DO NOT POP UP THE
STACK.

BRANCH TO THE ADDRESS AAA IF THE
TOP TERM IN THE STACK 1S NOT THE
INTEGER Oe OTHERWISE» CONTINUE
IN SEQUENCE. IN EITHER CASEs POP
UP THE STACK.

BRANCH TO THE ADDRESS AAA IF THE
TOP TERM IN THE STACK 1S THE
INTEGER Oe OTHERWISEs CONTINUE
IN SEQUENCEs IN EITHER CASE»
POP UP THE STACK.

Figure 8.2

D1.3-10

[{N 1§

LOF

AlA

FLP

POP

CALL

LOAD FLAG

RETURN

ARRAY INCREMENT
ADDRESS

FLIP

POP

EDT STRING EDIT

PNTY

EJT

RED

WRT

HLT

SP° N

BLK NNN

END

NOTE 1.

NOTE 2.

NOTE 1

PRINT

EJECT

READ

ENTER A PROCEDURE AT THE ADDRESS
WHICH 1S BELOW THE FLAG.

PUT THE ADDRESS WHICH IS IN THE
FLAG REGISTER ON TOP OF THE STACK»
AND PUT THE ADDRESS OF THE TOP OF
THE STACK INTO THE FLAG REGISTER.

RETURN FROM PROCEDURE.

INCREMENT THE ADDRESS WHICH IS NEXT
TO THE TOP OF THE STACK BY THE
INTEGER WHICH IS ON TOP OF THE
STACKs AND REPLACE THESE BY THE
RESULTING ADDRESSe

INTERCHANGE THE TOP TWO TERMS OF
THE STACKe

POP UP THE STACK.

ROUND THE NUMBER WHICH IS ON TOP OF
THE STACK TO THE NEAREST INTEGER Ne
MOVE THE GIVEN STRING INTO THE
PRINT AREA SO THAT ITS FIRST CHAR-
ACTER FALLS ON PRINT POSITION Ne

IN CASE THIS WOULD CAUSE CHARACTERS
TO FALL OUTSIDE THE PRINT AREAs NO
MOVEMENT TAKES PLACE.

PRINT A LINEs THEN SPACE AND CLEAR
THE PRINT AREA.

POSITION THE PAPER IN THE PRINTER
TO THE TOP LINE OF THE NEXT PAGE.

READ THE FIRST N NUMBERS FROM A
CARD AND STORE THEM BEGINNING IN
THE ADDRESS WHICH 15 NEXT TO

THE TOP OF THE STACKe THE INTEGER
N 15 THE TOP TERM OF THE STACKe.

POP OUT BOTH THE ADDRESS AND THE
INTEGERe CARDS ARE PUNCHED WITH UP
TO 10 EIGHT DIGIT NUMBERSs DECIMAL
POINT IS ASSUMED TO BE IN THE
MIDOLE. AN 11-PUNCH OVER THE
RIGHTMOST DIGIT INDICATES A NEG-
ATIVE NUMBERs

Figure 8.3

WRITE

HALT

PRINT A LINE OF N NUMBERS BEGINNING
IN THE ADDRESS WHICH IS NEXT TO

THE TQP OF THE STACKe THE INTEGER
N IS THE TOP TERM OF THE STACK.

POP OUT BOTH THE ADDRESS AND THE
INTEGERe TWELVE CHARACTER POSI-
TIONS ARE ALLOWED FOR EACH NUMBERe
THERE ARE FOUR DIGITS BEFQRE AND
FOUR DIGITS AFTER THE DECIMAL.
LEADING ZEROES IN FRONT OF THE
DECIMAL ARE CHANGED TO BLANKSe

IF THE NUMBER IS NEGATIVEs A MINUS
SIGN IS PRINTED IN THE POSITION
BEFORE THE FIRST NON-BLANK CHARACT-

ERe

HALT.

CONSTANT AND CONTROL CODES

SPACE

BLOCK

N = 1--9, CONSTANT CODE PRODUCING
N BLANK SPACES.

PRODUCES A BLOCK OF NNN EIGHT
CHARACTER WORDS.

DENOTES THE END OF THE PROGRAM.

IF THE TOP ITEM IN THE STACK IS AN ADDRESSs IT IS
REPLACED BY ITS CONTENTS BEFORE BEGINNING THIS

OPERATION«

SAME AS NOTE 1, BUT APPLIES TO THE TOP TWO ITEMSe.

Figure 8.4

EXAMPLE PROGRAM IN VALGOL I1
FIGURE 9

«BEGIN
«PROCEDURE DETERMINANT(As N) o»
+BEGIN
»PROCEDURE DUMP{) o9
«BEGIN
oREAL D o9
oFOR O = 0 o+STEP 1 +UNTIL N=1 DO
WRITE(MATRIX(e N#D o)s N) o»
PRINT
«END DUMP o+
«PROCEDURE ABSI{X) o
ABS = oIF O oL® X oTHEN X ¢ELSE =X o9
oREAL PRODUCTs FACTORs TEMPs Re fe¢ J o9
PRODUCT = 1 oy
oFOR R = 0 +STEP 1 <UNTIL N-2
oWHILE PRODUCT o== 0 .DC +BEGIN
I =R o
oFOR J = R+l +STEP 1 «UNTIL N-1 DO
oIF ABS(Ale N#I + R &) } oL
ABS{ Ale N®J + R o)) oTHEN
1 =3«
oIF Ale N®I + R o4} o= O oTHEN
PRODUCT = ©
«ELSE
«1F 1 o=2 R oTHEN +BEGIN
PRODUCT = —PRODUCT oo
«FOR J = R oSTEP 1 «UNTIL N=1 +DO
«BEGIN
TEMP = Afs N#R + J o) o>
Ale N®R + J o) = Ale N®] + J o) o
Ale N®1 ¢ J o) = TEMP JEND +END o»
TEMP = Ale N®R + R o) o4
+FOR 1 » R+l +STEP 1 +UNTIL N-1 .DO
+BEGIN
FACTOR = A(e N*I + R o) / TEMP o9
oFOR J = R «STEP 1 JUNTIL N-1 +DO
Ale N®I 4+ J o) = Ale N#1 + J o)
=FACTOR # Ale N*R + J &) o3

DUMP
+END «END «»
eFOR I = 0 LSTEP 1 <UNTIL N-1 DO
PRODUCT = PRODUCT # Ale N¥I + I o) oy
DETERMINANT = PRODUCT
+END DETERMINANT o>
REAL My Ws T os oARRAY MATRIX (e O «o 24 o) o9
SUNTIL «FALSE «DO +BEGIN
EDIT(1s *FIND DETERMINANT OF' } +» PRINTs» PRINTas
READ(Ms 1) s
oFOR W = 0 oSTEP 1 «UNTIL M-1 DO «BEGIN
READ(MATRIX (o M¥W o) M) o4
WRITE(MATRIX (o M®¥W o)9 M) oEND o
PRINT os T = DETERMINANT (MATRIXs M) o4
WRITE(Ts 1} o» PRINTes PRINT +END
«END PROGRAM

Dl1.3-11

