Principles of Programming

Section 8: Magnetic Tape Operations

EM Personal Study Program

P2k TaY -k B T AL R B » POV 7 G T o DL

Section 8: Magnetic Tape Operations

Magnetic tape provides compact storage for much larger amounts of
information than can be contained in core storage and allows for much
faster reading and writing than with punched cards. Magnetic tape
storage is available and heavily used for virtually all large computers,
and can be installed on the 1BM 1401. When the 1401 is used as a
medium-size computer by itself, magnetic tape provides large-capacity
storage for files and input data. When the system is used as an auxiliary
machine with a larger computer, magnetic tape is used as a commu-
nication device between the larger machine and punch card input or
printed output. The following discussion of the physical characteristics
of magnetic tape is applicable to all 1BM machines.

8.1 Physical Characteristics of Magnetic Tapes

Magnetic tape is wound on a 10l%-inch-diameter reel. The tape itself
is one-half inch wide and 2,400 feet long. It is coated with a magnetic
oxide material on which information can be recorded in the form of
magnetized areas. One reel of tape can contain as many as 16,000,000
characters; the actual number depends on how the information on the
tape is organized.

Each character on the tape is recorded in a seven-bit code very
similar to that used within the computer. Characters are recorded in
groups called blocks. A block may contain any number of characters,
Blocks are separated from each other by about three-quarters of an
inch of blank unrecorded tape called an interrecord gap. (The words
block and record are occasionally used as synonyms; in this section
we shall attempt to maintain a distinction between a physical block on
the tape and the one or more problem records that may be contained
in the block. Certain usages are so firmly entrenched, however, that we
cannot be completely consistent on this point.)

Each tape character is composed of an even number of ones; this is
contrasted with the representation within the computer in which each
character has an odd number of ones. This difference is necessary to
maintain compatibility with tapes from some of the large 1BM com-
puters.

'fhe tape codes for the characters used in the 1401 are shown in
Figure 1. It is necessary to qualify this statement as applying specif-
ically to the 1401, because there are a number of special control char-
acters shown at the right of Figure 1 that do not apply to all 1BM
machines. The coding of the standard characters is the same in all,
however.

Tape Mark
Group Mark
Segment Mark
Mode Change
Record Mork

CODES

LANK

1
0123456 789ABCDEFGH) JKLMNOPQRSTUVWXYZ& -[O-§+/, %#@@ 1+~ A2 1+
el [s] | [s]e] Jala] [wu o] [a]w =] [»] Jo]« o] Ja] o] [* n[e] Ju wls] [a]e Check
wojs]e]a]s]e]s]{s]a[a|s]n|ule]s]a 000

Il Word Separator -

+

«lal " Zone

ajujaa]s
. .
olalalel 1 Numerical
. .

In Figure 1, the seven-bit vertical groupings are the characters. We

c

B
A
8l
4

2

1

Figure 1. IBM 1401 tape character codes

speak of the horizontal groupings, containing one bit from each char-
acter in the block, as being horizontal rows or, sometimes, channels.
Rows are named in the same way as the seven bits of the character
within the computer, that is, CBA 8421.

The reading and writing of information with magnetic tape is sub-
ject to a considerable amount of built-in checking in 1BM tape systems.
First, there is parity checking of each character. As each character is
written onto tape, the parity bit is computed so as to make the total
number of ones in the character representation even. When the tape
is later read, the number of ones in each character read from tape is
checked to make sure that it is even. If it is even, we have a certain
amount of assurance that the character was written and read correctly.
To provide further confidence in the accuracy of the tape operations,
a parity check is made on the number of ones in each horizontal row of
each block ; as the block is written a count is maintained of the number
of ones in each row of the block. After the last character has been
written, another character, called the horizontal check character, is
recorded. This contains in each bit position either a one or a zero,
whichever is necessary to make the total number of ones in that row
even. This horizontal check character is provided automatically by the
computer circuitry and need be given no attention by the programmer.
When the tape block is read, a count is made of the number of ones
in each channel of the entire block, including the check character. If
the number of ones in each channel is found to be even, we have
further assurance that the tape operation is correct. The check char-
acter does not enter storage.

A third form of checking, called relative sensitivity level sensing,
provides further assurance of accuracy of tape reading and writing.
The engineering details are not of concern to us here.

2

‘

These checking features are designed to detect errors of two rather
different types. One type is actual malfunction of the electronic and
mechanical equipment. In modern computers such troubles are not
frequent. The other source of tape errors is the tape itself. The quality
standards imposed on the manufacture of the tape by the computer
must be extremely rigid, since the slightest imperfection can cause a
character to be recorded incorrectly. Furthermore, dust particles can
cause a weak signal to be recorded, and simple mechanical wear of the
oxide coating can cause the quality of the recorded signal to dete-
riorate, Great pains are taken to minimize troubles caused by the tape
itself: the manufacture of the tape is subject to stringent inspection,
great care is taken in a well run installation to avoid dust and dirt on
the tape, and the tape units are designed to cause as little wear of the
oxide as possible.

When a section of tape becomes damaged or worn, it is common
practice to cut out the bad part, leaving two shorter tapes. This is no
inconvenience, since there is frequent need for tapes shorter than the
maximum reel length. Even a full length tape is shortened in use: since
the beginning of the tape gets the most wear, by being handled in
mounting the reel, the first 20 feet or so is cut off from time to time.
(This of course is done at a point in the usage of the tape when no valid
information is recorded on the tape!)

The various automatic checks are made only when the tape is read.
If anything should turn out to be wrong with the information recorded
on tape, no indication of the fact will appear until the tape is read.
If the detection of the error were postponed until the tape is used in the
fiext processing cycle, it would be moderately inconvenient to. recon-
struct the correct information. It is much more desirable to know about
the difficulty immediately after the tape is written, while the informa-
tion is still in core storage ready to be rewritten.

This immediate checking is provided in the tapes used on the 1401
by the two-gap head. The term “head” is used to describe the assembly
of coils and magnetic pole pieces that reads or writes information on a
tape. In many computers, a single head is used both for reading and
for writing. In the 1BM 729 and 7330 tape units, there is one head for
reading and a separate one for writing. The writing head is positioned
in front of the reading head, in the sense of the direction of tape
motion. Thus, when a character is written, it is automatically read
a very short time later by the read head to determine that the infor-
mation has been recorded readably on tape and that parity counts
are correct. If there should happen to be something wrong with the
tape or with the tape unit, then it is a fairly simple matter to correct
the difficulty since the information is still available in core storage.

Magnetic tape is written and read in a tape unit, of which three
types may be used with the 1401: the 7330, the 729 Model II, and the
729 Model 1V. The number of tape units attached to a computer is

3

variable at the discretion of the user; in this book we assume a machine
with four.

The difference between the three tape units that can be used with
the 1401 is in the speed at which the tape moves. In all three, there
may be either 200 or 556 characters per inch of tape, depending on
the setting of a switch on the tape unit. In the 729 IV, the tape moves
at 112.5 inches per second, making the transfer rate either 22,500 or
62,500 characters per second. The corresponding figures for the 729 II
are 75 inches per second and either 15,000 or 41,667 characters per
second, and for the 7330 they are 36 inches per second and either
7,200 or 20,016 characters per second. These performance character-
istics are summarized in Figure 2. :

7330 729 11 729 |V
Density, Characters per Inch 200 or 556 200 or 556 200 or 556
Tape Speed, Inches per Second 36 75 112.5
interrecord Gap, Inches 3/4 3/4 3/4
Start/Stop Time, Read/Write ' Varies 10.8 7.3
Operation, Milliseconds
Character Rate, Characters 7,200 15,000 22,500
per Second or 20,016 or 41,667 or 62,500
Rewind Time, Full 13.3 1.2 0.9
Reel, Minutes or 2.2

Figure 2. Summary of magnetic tape characteristics

In figuring the time required to read or write a tape block, we must
consider not only the time to transfer the characters in the blocks, but
also the time required to accelerate the tape to full speed before read-
ing or writing. This start/stop time turns out to be about the same as
the time required to read past the interrecord gap at full speed.

The total time required to read a tape depends on the fraction of
the time the tape is kept in motion. The average character transfer
rate depends not only on this figure but on the size of the blocks, bear-
ing in mind that there is about three-quarters of an inch of blank tape
between one block and the next. On the 729 tapes at low density, for
instance, three-quarters of an inch of tape will hold 150 characters.
If the blocks are smaller than this size, we see that less than half of the
tape contains information. Therefore, even if the tape were kept mov-
ing all the time, the average character transfer rate would be only
half the rate at which they are transferred during the reading or
writing of a block. We shall see later that this consideration has a
significant influence on the programming techniques used with mag-
netic tapes.

3

It is necessary to be able to detect the beginning and the ending of
the tape, both for design reasons in the magnetic tape unit itself and
because of programming considerations. For this purpose, reflective
spots, also referred to as photo-sensing markers, are placed on the tape
to enable the tape unit to sense where reading and writing are to begin
and to stop. The reflective spot at the front end of the tape is called the
load point. Appropriate button pushing on the tape unit when the tape
is loaded will cause the tape to be positioned just beyond the load point.
The reflective spot near the end of the tape is employed when writing,
to indicate that the physical end of the tape is about to be reached and
that no further information should be written. Detection of the end-
of-reel reflective spot during writing turns on an indicator in the
computer.

When the end-of-reel spot is detected during a writing operation, we

‘ordinarily write a final block on the tape consisting simply of a tape

mark. This is a special character that will later be detectable upon
reading, to signal the end of the tape by turning on the same end-of-
reel indicator that is turned on by the reflective spot when writing. The
tape-mark technique of denoting the end of the tape is used for two
reasons. First, the tape unit does not turn on the end-of-reel indicator
when the reflective spot is detected on reading; we must therefore have
some other technique for detection of this condition. The second reason
is that we sometimes wish to put on tape an indication that no more
information follows, even though the end of the physical tape has not
been reached. The tape mark provides this capability.

Since the complete collection of valid data blocks is frequently called
a file, the tape mark is also sometimes called an end-of-file mark. We
prefer here, however, to reserve the word file for the meaning in which
it was used in Section 1, in order to always make a clear distinction
between a tape reel, and a file of information, which may consist of
only a few blocks, a complete tape, or many tapes.

Each tape reel is provided with a removable plastic ring on the back
side, that is, the side nearest the tape unit. This is called the file pro-
tection ring. It is not possible to write on a tape unless this ring is
inserted in the tape reel. This feature is provided as a precaution
against accidental destruction of permanent master files. The usual
procedure is to remove the file protection rings from such master
tapes after they have been initially written and then require the
authorization of some responsible member of the organization before
the file protection ring can be inserted in any tape reel.

Most people have at least slight difficulty in remembering whether
the tape is protected by inserting or removing the file protection ring.

We suggest the mnemonic phrase “no-ring-no-write.”

Review Questions

1. Quitline the built-in error checking in IBM magnetic

tape systems.

2. What is the maximum number of characters that can
be written on a 2,400-foot reel of tape at low density?
At high density? Why would a reel never contain so
many characters?

3. What is the purpose of the file protection ring?

8.2 Magnetic Tape Instructions

The operation of magnetic tapes in a computer system is controlled
by the execution of suitable instructions, as is everything else. We
shall look into the tape instructions in the 1401 briefly, in order to get
a general idea of what the basic machine instructions are and what
they do. We shall see in the following subsection, however, that tape
operations are seldom actually set up this way in normal program-
ming; instead macro-instructions are used, which greatly simplify tape
programming. For now, therefore, we wish merely to survey the actual
machine instructions in order to understand better what the macro-
instructions do.

Tapes are most commonly written and read in the 1401 with two
instructions called Write Tape and Read Tape. The operation code for
both instructions is M, which is also the operation code for Move; we
therefore use the mnemonic operations code MCW. However, both
instructions require a d-character, and the net result is that we have
two entirely new instructions that are essentially unrelated to a Move.
For reading tape the d-character must be R and for writing it must
be W.

To write a block on tape in the 1401, We must specify three items
of information to the computer: .

1. Which of the tape units is to receive the block ? This is specified
by the A-address of the instruction, which must be of the form %Ux,
where x is the number of one of the tape units attached to the system.
The percent sign and the U are required by the design of the system
to specify magnetic tape. The numbers of the tape units may be set
by a dial on each tape unit. An installation with five magnetic tapes,
for instance, would most likely establish the convention that the tape
units are dialed so as to run through the numbers 1 to 5.

2. Where in storage is the first character of the block to be written?
This is answered by the B-address of the tape instruction, which spec-
ifies in regular three-character form the high-order character posi-
tion of the first character. Note carefully that characters in a block
are read from successively higher-numbered locations.

6

3. What is the length of the block to be written? This question is
answered by placing in core storage, after the last character of the
block, a special symbol called a group mark with a word mark, The
group mark consists of all ones in the zone and numerical portions
of the character. When a group mark with word mark is detected
in core storage during writing, the writing operation stops, without
having written the group mark with word mark on tape.

Write Tape
FORMAT Mnemonic Op Code A-add B-add d-character
MCwW M %Ux xxx W

FUNCTION The tape unit designated in the A-address is started.
The d-character specifies a tape write operation.
The data from core storage is written on the tape
record. The B-address specifies the high-order posi-
tion of the record in storage. A group mark with a
word mark in core storage stops the operation. The
group mark with a word mark causes an inter-
record gap 1o be created.

WORD MARKS Not affected.
TIMING T=.0115 (Li + 1) ms + Ty

The actions on reading a tape are very similar, except that the
operation is ended in a slightly different way. The operation code is
M, the A-address is 9% Ux where x specifies a tape number, the B-ad-
dress is the address of the first position into which a character should
be read from the tape block, and the d-character is R. The operation is
stopped by the occurrence of either of two things. If the interrecord
gap is sensed in reading the tape, then a group mark is inserted in
core storage following the last character of the block and the operation
is stopped. If, on the other hand, a group mark with word mark is
sensed in storage before reaching the end of the tape block, then the
transmission of characters is stopped immediately, although the tape
does move past any remaining characters on the tape until it reaches
an interrecord gap.

Five somewhat related instructions for controlling the action of the
tape unit without transmitting information complete the repertoire
of tape instructions. All of the five instructions have the actual opera-
tion code U and the mnemonic CU, for Control Unit, They are dis-
tinguished by their d-characters.

Read Tape

FORMAT Mnemonic Op Code A-add B-add d-character
MCW M %Ux xxx R
FUNCTION The tape unit specified in the A-address is started.

The d-character specifies a tape read operation.
The B-address specifies the high-order position of
the tape read-in area of storage. The machine be-
gins to read magnetic tape, and continues to read
until either an interrecord gap in the tape record
or a group mark with a word mark in core storage
is sensed. The interrecord gap indicates the end of
 the tape record, and a group mark (code CBA
" 8421) is inserted in 1401 core storage at this point.

WORD MARKS Not affected.

Time varies for type of tape unit and tape density
4 used (see Figure 2). ‘

The Back Space Tape instruction (d-character: B) causes the tape
unit specified in the A-address to move backwards over one tape block.
The first interrecord gap encountered in the backward direction stops
the operation.

Backspace Tape

FORMAT Mnemonic Op Code A-address d-character
CU U %Ux B

FUNCTION The tape unit specified in the A-address backspaces

over one tape record. The first interrecord gap en-
countered stops the operation.

WORD MARKS Not affected.
TIMING LT=.0115(L; + 1)ms + Ty

The Write Tape Mark (d-character: M) causes a tape mark to be
recorded immediately following the last block on tape, to indicate what-
ever the programmer wants it to indicate. Most commonly it denotes
the end of valid information on the tape, and/or that the physical end
of the tape is about to be reached. It is, therefore, sometimes called the
end-of-reel indicator, but it can be used for several other purposes. The
tape mark has zone bits of 00 and numerical bits of 1111. When a tape
mark is later encountered in reading the tape, the end-of-reel indicator
in the computer is turned on; it may be tested with a Branch If Indi-

8

cator On instruction. It should be carefully noted that the Write Tape
Mark instruction creates a separate block preceded by an interrecord
gap. Thus, when the tape is read, the tape mark is not detected by
reading the last block before the tape mark. It is detected only by read-
ing the block that contains the tape mark. Therefore, after every Read
Tape instruction there should ordinarily be a Branch If Indicator On
instruction to determine whether data was read or the tape mark en-
countered. It should also be noted carefully that there is only the one
indicator for this purpose in the entire system. Therefore, the Branch
If Indicator On instruction will always test whether a tape mark was
detected on the tape most recently read. It is not possible to read from
two tape units and then use a Branch If Indicator On instruction to
determine whether there was a tape mark on the first one. The indi-

- cator is turned off by selecting a new tape unit or by testing it.

* Write Tape Mark

FORMAT Mnemonic Op Code A-address d-character
CU U %Ux M
FUNCTION This instruction causes a special character (8421)

to be recorded immediately following the last rec-
ord on tape, to indicate an end-of-reel condition.
When the tape mark is read back from a tape, the
end-of-reel indicator is turned on. This signals the
1401 program that the end of the utilized tape has
been reached. ‘ '

' WORD MARKS Not affected.

TIMING T = .0115 (L; + 1) ms + Ty

The Skip and Blank Tape instruction (d-character: E) is used to
erase about 33/ inches of tape. It is used when repeated attempts to
write on an area of tape have shown that a readable tape record can-
not be written there. By erasing the bad area of tape, we get the effect
of an unusually long interrecord gap. The idea is that the bad section
of tape may be limited to one small area and that tape farther along
may be usable,

Skip and Blank Tape

FORMAT Mnemonic Op Code A-address d-character
CU U %Ux E

FUNCTION The tape unit designated by the A-address spaces

forward and erases 33/ inches of tape. The actual

skip occurs when the next Write Tape instruction is
executed.

WORD MARKS Not affected.
TIMING T=.0115(L;+ 1) ms

Processing can continue immediately after this op-
eration. However, 47 ms for 18M 729 II and 27 ms
for 1BM 729 IV must be added to the next Write
Tape instruction time,

The Rewind Tape instruction (d-character: R) causes the selected
tape unit to rewind its tape to the load point. If there is less than about
400 feet of tape to be rewound, the tape simply moves backwards past
the heads. In the 729 units, if there is more than about 400 feet, the
heads are raised, the tape is lifted out of the vacuum columns, and the
rewinding is done at a much higher speed. The total time to rewind
the tape does not exceed the figure shown in Figure 2 for each tape
unit, regardless of how much tape there is on the takeup reel: the more
tape there is, the faster the high speed rewind goes. Processing may
continue during the rewinding.

Rewind Tape
FORMAT Mnemonic Op Code A-address d-character
CU U %Ux R

FUNCTION The tape unit designated by the A-address is re-
wound to its load point.

WORD MARKS Not affected.

TIMING T = .0115(L; + 1)ms + 10 ms
Rewind time is 1.2 minutes per 2,400-foot reel for
the 1M 729 11, .9 minutes for the 1BM 729 IV, and

13.3 minutes for the 7330, but it is not calculated

with program time. Processing can continue approx-
imately 10 ms after this instruction is interpreted.

The Rewind Tape and Unload (d-character: U) performs the same
functions as the Rewind, but in addition makes it impossible for the
scomputer to use that tape unit until a switch on the tape unit is
"manually depressed. This is ordinarily used when a tape has been writ-
ten that should be dismounted from the unit and a new tape mounted
so that processing can continue with a new reel. Without this feature,
there would be the constant danger that a recently written tape could be
destroyed by writing new information on it, in the mistaken hope that
the operator would have changed it by the time the new information
was to be written.

10

Rewind Tape and Unload

FORMAT Mnemonic Op Code A-address d-character
CU U % Ux U
FUNCTION This instruction causes the tape unit specified in the

A-address to rewind its tape. At the end of the
rewind, the tape is out of the vacuum columns, and
the reading mechanism is disengaged. The unit is
effectively disconnected from the system, and is not
available again until the operator restores it to a
ready status,

WORD MARKS Not affected.
TIMING . T =.0115(L; + 1)ms + 10 ms

Rewind time is 1.2 minutes per 2,400-foot reel for
the 18M 729 II, .9 minutes for the iBM 729 IV, and
2.2 minutes for the 7330, but it is not calculated
with program time. Processing can continue approx-
imately 10 ms after this instruction is interpreted.

For an elementary example of the use of some of these instructions,
consider the first part of a job that involves putting the information
from a deck of cards onto tape. The tape, once written, might be used
in later operations in the 1401 or it might be used as input to a larger
computer. In order to illustrate the basic operations without unduly
complicating the logic, we shall consider an extremely simplified and
somewhat unrealistic approach. Each card will simply be written onto
the tape on tape unit 1, exactly as it is read into storage, with one card
in each tape block.

The block diagram of this program is shown in Figure 3, and the
program in Figure 4. We load a group mark with word mark as a
constant into position 81, which is the next character position after the
read area. At the beginning of the program we read a card and imme-
diately write the information onto tape 1. Next, a test is made to see
whether the information written was readable when it passed the read
head after writing. If it was, we test to determine whether the card
just read was the last one, If it was not the last card, we branch back
to read another card. If the tape was not readable, we write on the
printer a short message to the operator that we ran into difficulty, and
halt. In actual practice, using the Input/Output Control System, con-
siderably more pains than this will be taken to attempt to write the tape
correctly and skip over the bad tape if it cannot be written in a few
attempts, If the last-card test showed that the end of the deck had been
reached, we write a tape mark, rewind the tape, print a message that
the job is ended, and halt. This job-ended message is not too crucial
here since the operator would readily enough see that all the cards had

11

adp; 21}oUBDW OJUO SPJOY O YIBP D WOJ) UOHDWIOJUT BY} dLiMm O} wosboid g4s "y 24nBig

LN U R L B SR AL R A L L L LA " “ L T T T " T T T T T
R I s S S S S S S S B e S AN ._"",..4__,". — T T T
T ——r—— T
T T T T T T T T T T T T T T L " " T T T T T T T T T " T T T T T A 4 T

[!

— — ——— T T e
T T T T ¥ T T T T ¥ T T T T T T n " T T T T T T T T T " T T T T T T o761
LM S S S I B B MR RS SN SN R SR S T .r.”|"4x<\. LI R T T “ T T T 7 T o e 1
oo rrTmTmrr T Tyt FIOANE CCE RN B DR
R W 1) I G R T T '%[mo'al "2'9’'s'swle1]|°T"
v TTaIIHS'INT S R YR NDEEEE I BEE
T TN Y VA 'd' oY 9 T T INECE CED D D D
LA A A A L L A AL 4_""____. ..._.X“.IA_....o_n._

T 39V S S AN LTV H Ty T RN L RN B D
T T Ty uE 3 TILTHM T é1ego BRI RS BREECE B B

A IR A RN B DR

T T 3’9V §S3IW GN3 R MR B I B R =

T T T@e r T3 T EM IR 19SS SNy, T T T T T T feTeTe
A A M O 1 R MG IO I I R
VN 34V 3L T MW T T TR %) NO[HTSTITNTI[T JeTeTo

T T T T T T T TN R yavesl , e T T T T [eTeTe

8 aa vy LSV TCTON[Y T T HWSTINTI4 | 8 @ T T [erTe

T o TWeu Y3 3dvi Ty T Ve a3l [7ef 77T T T fereTe
T3V NO 'L TUMM | ;1 10’00 I L R I

TT T Tag YY) avay T R N RSN B
(3 or onnln ‘ray 14 [FaLD e |2 ss €

SININMOD p[B] ww |¥ sema Sy woiLva 300 13ev? H..:S ELT]
ONvY3d0 (8) ANYE340 (V)
A uouPdI 1§14uAP) aj0Q Aq p 5014 =
o771 oN oB0d 133HS ONIGOD uesbord
3

‘'S0 NI GILNIY
ZIS11PIX WaOd

WILSAS ONIWWVEOOUd DJITOBWAS LOorL WaI

NOLLYNOHIOD SINIHOYW SSINISNT TYNOLYNIIINI

Wai

been read, but it is good practice to be fairly free with such messages

(or other signals), so that the operator need never be in doubt as to the
status of the program. When appropriate, we also like to be able to

write out messages specifying what action to take next.

Start

adny >youbow oo SPIDd JO YIBp D WOl uoy

Read a Card
Write a

Tape Block

Write Tape

Error Message

Write
Tape Mark

Stop

Rewind Tape

owJojur ayj ajlam o woiboid o jo wosboip Y09 ¢ aunbij

£

End Message
Stop

Write Job

12

This example is obviously vastly oversimplified. We shall see in
the next subsection that the same general task can be done much more
simply using the Input/Output Control System; in spite of the sim-
plification of the programming, the job will be done in a much more
thorough fashion.

Review Questions

1. How does the core storage addressing of information
to be read from tape or written on tape differ from other
data addressing on the 14017

2. What are the two ways that tape reading may be stopped
in the 14017

3. When is a tape mark detected?

8.3 Tape Programming with Autocoder and I0CS

The effective use of magnetic tapes in a data processing system re-
quires consideration of many factors. If every programmer had to take
all these factors into account himself, and then write the detailed
program properly to handle them, a great deal of time would be
wasted; the same problems face anyone who ever writes a tape pro-
gram. Fortunately, this is not the case; a standard tape program-
ming system is available. This package, called the 1401 Input/Output
Control System, or IOCS, handles all of the normal input and output
programming considerations with a minimum of programmer effort.

IOCS is one of the major parts of an advanced coding language
similar to SPS but considerably more powerful, called Autocoder.
The basic ideas of Autocoder are generally the same as discussed in
Section 4: symbolic addresses may be used in place of numerical ad-
dresses; mnemonic operation codes replace actual; the symbolic source
program Is translated into an actual object program by an assembly
process. The major differences between SPS and Autocoder are these:

1. A free-form coding sheet is used, which means here that there
are no fixed fields for the operands. Instead, the programmer uses as
much space as required for each operand, and separates the operands
by commas if there is more than one.

2. Augmented mnemonic operation codes are used. This relieves
the programmer of writing the d-character in most instructions, and
makes it unnecessary to write the %U in the A-address of a tape
instruction, for instance. A complete list of Autocoder mnemonics
appears in Section 12,

3. It is possible to use literals—that is, instead of writing the address
of a constant in an instruction, we may write the constant itself. The

14

Autocoder processor assigns a location to the constant, and fills in the
assigned address in the instruction.

4. Macro-instructions are provided. We shall be concerned here
only with the IOCS macros, with which the programmer can specify
in a very condensed form the tape operations that he wants to perform;
the processor translates these into routines of dozens or hundreds of
instructions. In short, one instruction in the source program is trans-
lated into many actual machine instructions; this characteristic makes
Autocoder a compiler rather than an assembler as SPS is,

Autocoder also provides the programmer with the flexibility of

- making up macros for the purposes of his program. Thus, some fre-

quently used group of instructions can be called for in writing the
source program simply by writing the macro, which is a much simpler
matter than writing all the instructions themselves. Setting up a new
macro is not appreciably more difficult than writing the detailed in-
structions to do the processing once; after that, all similar operations
can be handled merely by writing the macro.

Autocoder represents a significant advance in programming so-
phistication over SPS. We shall not attempt to give a complete descrip-
tion of all the features of the language. A summary of the IOCS macros
follows, and some of the other features will be illustrated in the
programs,

The I0CS macros are of three types. The first, DIOCS (for Define
I0CS), is used by the programmer to define the machine configura-
tion on which the object program will run, along with certain general
information about the files and their processing. The second type, DTF
(for Define Tape File), is used to describe in detail each of the files
used in a problem. The DIOCS and DTF are called declarative macros:
they provide information to the Autocoder processor, but do not result
in any action in the object program.

The next four macros, on the other hand, do cause action in the
object program, and are therefore called imperative macros. The
OPEN, CLOSE, GET, and PUT macros lead to the creation of object
program instructions that actually carry out the desired processing of
file information.

In order to see how these macros operate and to illustrate their use,
we must investigate some of the considerations that affect tape pro-
gramming,

Record Blocking. Tt is usually quite inefficient of tape space, and
therefore of time, to make tape blocks as short as they would be with
normal tape records. Thus in the program of Figure 4, if we were
using a 729 tape at high density, the card characters would take up
only about 209 of the total tape space. All the rest would be inter-
record gaps. Therefore, it is common practice to write a number of
what might be called “problem records” or “logical records” in one
tape block. This is called tape blocking; the number of logical records

15

in one tape block is called the blocking factor. In the special case
where each block consists of one logical record, as in the previous
example, we speak of unblocked records, or of a blocking factor of 1.

Tape blocking is a virtual necessity if the computer system is to be
used effectively, but it does create certain programming problems.
When a tape block is read, several problem records are brought into
core storage. The processing instructions must be arranged to pick up
the records in succession from the storage area into which the block
was read. This deblocking can be handled by moving the records from
the block input area to a working storage area as needed, or by using
an index register to select the records in succession from the block
input area.

In writing, the records must be assembled, or blocked, in the output
area and then written when a complete block has been assembled. Once
again, this can be done either with a working storage area or with an
index register. g

Variable vs. Fixed Length Records. It fairly often happens that the

amount of information in a tape record varies greatly from one record
to another, typically because a small fraction of the file items require
additional data not needed for the bulk of the file. For instance, a
typical master record in an electric utility billing system contains a
minimum of 200 characters, an average of 300, and a maximum of
600. Most customers have only one meter, but a certain fraction have
two; bills are generally sent to the same address as the meter address,
but not always; if a customer has two meters, they are generally at the
same address—but not always. It is clear that if the master records
were set up to contain the maximum information that could ever be
necessary—the simplest approach—a great deal of tape space would be
wasted in the large majority of the records, which require only half
as much information. The same sort of thing happens in many other
types of applications. o

A better choice is to let the length of the records vary according
to the amount of information that must be recorded. Now, some means
must be provided to indicate the length of each record; this is quite
easily handled by placing in each record a number that specifies the
total number of characters in the record.

Block Counts. 1t is often very useful to know precisely how many
blocks there are on a tape. This block count can readily be generated
as the tape is written, and the block count recorded as part of a separate
block at the end of the tape. (This is the trailer label described below.)

Record Counts. It is also frequently useful to know how many rec-
ords there are on the tape. This is usually not just the product of the
number of blocks and the blocking factor, because the number of
records in the file may not be a multiple of the blocking factor. This
count can also be generated by the program and written in the trailer

block.

16

e AT ST v

" Control Totals. To provide a check on the accuracy of programming
and of machine operation, it is valuable to have in the trailer block
the sum of some field in each record on the tape. This might be, for
instance, the sum of the dollar amounts in all records. Such a control
total can be accumulated as the tape is written; when the same tape is
later processed, the control total can be developed again and compared
with the control total in the trailer. This gives a fairly strong assurance
that all records were processed. (Failure to process a record or two
under unusual circumstances is a surprisingly common programming
error.)

The field summed actually need not have any meaning as a number
by itself, as a dollar total ordinarily does. Forming the sum of all the
account numbers, or all the city codes, or almost anything else, gives
just about the same degree of checking. When a control total has no
meaning in itself, it is called a hash total. :

Tape Labels. Many computer installations have hundreds or even
thousands of reels of tape, making it crucial that there be no mixups in
tape identification. Running a major job with the wrong input tapes,
or writing over a tape that should not have been reused, can be a minor
catastrophe. Unfortunately, such mixups can happen all too easily,
making it most desirable to have some sort of identification recorded
on the tape itself, in addition to the paper label attached to the reel.
This is the function of the header label. A normal header label con-
tains the file name, a reel number, a reel sequence number within the
file if there is more than one reel to the file, the date of creation of the
tape, and the retention cycle. These last two items serve important
purposes: they prevent a tape from being reused when the information
on it is still needed, and they prevent the information on a tape from
being used after it is outdated. :

A program to use labeled tapes must obviously provide for the crea-
tion of labels on new output tapes, for checking the labels of input
tapes to determine that the right data is being used, and for checking
labels of output tapes to be sure that valid data is not being destroyed.
Label creation and label checking are two of the many functions pro-
vided by 10CS, with next to no effort required of the programmer.

Restart. It occasionally happens that a job must be stopped when it
is partially completed. This can happen as a result of machine trouble,
operator error, or because a higher-priority job must be run. When
the job is restarted, a number of problems arise: How far along was
the job when it was stopped? What was in core storage? Which tapes
were mounted on the tape units? Where was each tape positioned?
The general idea of a restart procedure is to provide the answers to
these questions at a number of points through the running of the job;
these are called checkpoints. Anytime the job must be stopped, it is
necessary only to return to the most recent checkpoint and start from
there, rather than going back to the beginning of the job.

17

Routines must be provided that will take care of all problems of
establishing checkpoints and restarting a job that was stopped before
it was completed. At the completion of processing of every tape, and
at any other point the programmer wishes to specify, the entire con-
tents of core storage must be dumped onto a separate tape; this estab-
lishes where the program was at the time of the checkpoint. This dump
must also contain the identification of every tape then mounted, and
block counters that tell the position of each tape. If it is necessary to
restart, the special routines can be called into operation. They will
print out instructions to the operator as to what tapes to mount; they
will position each tape at the point where it was at the time of the
selected checkpoint, and call back into storage the exact storage con-
tents at the time of the checkpoint. The program can now continue just
as if nothing had happened.

Let us now return to the consideration of the IOCS package itself.
As noted above, the programmer writes macro-instructions in his
source program. The first of these is the Define Tape File (DTF)
macro, of which there must be one for each tape file. We shall not be
concerned here with the details of writing the DTF macros, which,
although presenting no conceptual difficulties, would take too much
space to describe completely. Therefore, the examples below will be
somewhat “schematic,” in that we shall summarize the information
that would have to be in the DTF macro, without actually displaying
the form in which it would be written.

The DTF macros define the files; the following macros call for action
upon them.

OPEN. Before the processing of a file can be started, the file must
be initialized by the use of the macro-instruction OPEN. This macro
may have any symbol in the label field, has the code OPEN in the
operation code field, and has the name of the file in the operand field.
The name must be the same as the name used in the DTF macro.

The OPEN macro-instruction performs the following operations
on the file when the object program is run:

1. The file is made available for processing.

2. The tape is rewound (if desired).

3. The tape label is processed if the DTF indicates that the tape is
labeled. For input files, the OPEN macro reads and checks the header
tape label; for output files, OPEN checks the retention code of the
mounted reel and writes a new label if the code indicates that the in-
formation is no longer valid.

The operations performed for the first reel of a multi-reel file are
performed automatically for each succeeding reel within the file, The
checks are made as the end of one reel is reached and before the use
of records from the next reel. This is done as an automatic part of the
GET and PUT macros; the programmer need write only one OPEN
for all reels of a multi-reel file.

18

CLOSE. When a tape file is no longer needed, it is removed from
use by executing the macro-instruction CLOSE. Like the other macros,
this one may have a symbolic label; the operand field contains the
names of the files being closed, with the names separated by commas
if there is more than one. The following operations are performed on
output files:

1. The file is made unavailable for processing.

2. The tape is rewound (if desired).

3. Any records still in the output area are written on tape, which
takes care of partly filled blocks. The routine then writes a tape mark,

followed by the trailer label, followed by another tape mark.

For input files, the operations are:

1. The trailer label block and/or record counts are checked, if this
action has been specified in the DTF macro.

2. The tape is rewound.

GET. This macro performs all the operations required to obtain
another record and make it ready for processing. The programmer is
thus relieved of the hours or days of programming required to accom-
plish all of the following:

1. If all the records in the previous block have been processed,
another tape block is read.

2. If all the records have not been used, a new record is made
available.

3. If a tape error is detected in reading, the routine backspaces the
tape and reads again. If the difficulty is nothing more serious than a
speck of dust, which is often the case, the backspacing and rereading
will often dislodge it and the second reading will be correct. However,
if the tape is still not readable after several attempts to reread it, the
routine takes whatever action the programmer has decided should be
taken in such a situation.

4. Tf the end-of-reel condition is detected in reading, the trailer
label block and/or record counts are checked, and a character in the
trailer label is inspected to determine whether another reel of the same
file follows. If the DTF macro specifies special routines for the end-of-
reel and end-of-file conditions, a branch is made. If not, the tape is
rewound and the tape on the alternate unit for this file is prepared for
use.

The GET macro, which as usual may have a symbolic label, speci-
fies in the operand field the file from which a record is to be obtained.
All of the above operations follow automatically (as far as the pro-
grammer is concerned).

PUT. This macro is analogous to GET, except that it refers to output
files. It performs the following operations:

1. A record from an input area (or from a working storage area)
is moved to an output area. If this record fills the output area, the
block is written on tape.

19

s

2. If an error is detected in the writing, the tape is backspaced and
rewritten. If the record is still bad, a section of tape is erased and the
record is written again. If an extended section of tape is bad the
routine will take whatever action the programmer has decided should
be taken in such a situation.

3. If the end-of-reel reflective spot is detected during writing, the
trailer label is written (with an indication that another reel follows),
the reel is rewound, and another reel used for further writing with
this file.

It is realized that a quick sketch of this sort does not give the reader
enough information to begin writing useful programs with 10CS. It is
hoped, however, that if the general idea of how the system can be
used has been grasped, then the reader will have no particular diffi-
culty in picking up the details. In order to get a little better feel for
the use of the system, we may consider some examples.

Let us first rewrite the illustrative program of the previous sub-
section, with blocking of the tape. The block diagram, Figure 5, is
considerably simpler, even though a great deal more is being done.
The OPEN box, for instance, takes care of all label checking. The
PUT box takes care of all tape writing, blocking, and checking. The
fact that the output tape is blocked would be specified in the DTF for
this file, which we are not showing. Except for the DTF, all we have
to do to handle blocking is to set up an output area large enough to
hold a complete block. The CLOSE box takes care of writing a trailer
label, writing tape marks, and rewinding the tape.

The Autocoder program shown in Figure 6 is not especially difficult
either, although the new coding form makes it appear a little strange.
Notice the free form in which the operands are written. About the only
restriction in writing the operands is that there be not more than one
blank space within the operand field, since two consecutive blanks
indicate the end of the field. The remarks may begin anywhere after
two blanks; it is common practice to start all remarks in the same
column, for ease of reading. Notice also that the operation field is now
five columns instead of three, to allow for the augmented operation
codes and the macro operation codes.

This program uses two new Autocoder pseudo operations. The first
is Define Area, for which the operation code is DA, It is used to set
up an area of storage that can be referred to in the PUT macro. The
3 specifies that three groups of 80 characters are being set up for

_this area; the X1 specifies that index 1 is to be used by the object pro-

gram in stepping through the records in the block; the G specifies
that a group mark with a word mark is to be set in the character position
to the right of the 240-position area. We shall see in the next sub-
section how the DA instruction can also be used to define fields within
the area.

20

Start

OPEN File

Read a Card

PUT
Record in File

CLOSE File

Write Job
End Message

Figure 5. Block diagram of the Autocoder operations to do the job diagrammed in Figure 3

70

65

60

435

OPERAND

40

30

20|

fperaﬁ
15)16

Label

Line
sle

The second new pseudo instruction is Equate, for which the opera-
tion code is EQU. It is used here to establish 0001 as the absolute
equivalent of the symbol CARD. This would ordinarily be done with
the DA operation, but it is always illegal to use an instruction of this
type to set up an area or a constant in the card read area, since this
will ordinarily disturb program loading operations.

Note that there is no “count” field on the Autocoder form. Numerical
constants are entered into the program with as many character positions
as there are digits in the constant. Alphameric constants must be
preceded and followed by the symbol @.

ey
TR T
i
PR S
R U S U S G 1

P T N

U TN R W B U S
AR S W W O U W VA N WY S Y
PN WS W S WS WA W U WO S T W ¥

P S U SO S W YIS SO St
b
P Y WY S WO SN W S S S G W'Y
PR
PR T SR W S T W B |

READ A CARD

Pl b bl Y L

R S S S

Review Questions

L

1. Distinguish between a record count, control total and
hash total. List advantages and disadventages of each,
in terms of such considerations as simplicity of compu-
tation, degree of checking provided, and types of errors
checked against.

2. Why is record blocking used?

3. It would seem that as many records as possible should
be placed in a block—that is, that the blocking factor
should be as large as possible. What sets a limit on the
degree of blocking?

4. List the functions of a header label.

. What does the programmer do to incorporate the de-

sired 10CS routines in his program?)

6. What are the principal differences between SPS and

Autocoder? s

weldokgglad pn B0 VT

PR R S T W

A
PSS W D U U S TS S T VS S U S U S S G U S SUNY S W S S S

S U S S T WA TGS S WS G SN G NN WUV W S U U ST ST SN SN G S G G W S St

PURITES T WO S VS S U SN NS S VD WA ST TN ST S S S G |

N S
PSS U ST RN W WY W WO SR YT W A S SR W S W W 1

MWW TSt

PO W S U N G VR S U U S S S T U

(52

PO ST TN DI ST VT W W G W Y DU T S G T |

iAo a0

PO S U W

PR WD W WY TS SU00 VN S SN YOS VA N0 VY U W WO S G N NN G T S G T

3AllAlIJAAIAAlllAlAIlAllAlllllLllll

bk A4

CARD ,OUTPUT ,

POl S Y

8.4 Inventory Control Case Study

PO S Y S W S S W A N TN WA WA S T S

UTPUT

L
[T I |

i

LAAASATACADA 1 A PR L A 14 1 1 i1 A .1 A1 A lLlALSATA ACIAARIDL LQA Aol A4) Y 1 AL Ao b) & I
DCW, [@y@eB FINISHED@ , ., . . v oy v 0w v v v uu v i v i uay

MESSG),212, ., vy, VOB END MESSAGE, L

3X80, X1, 6 vy
START, v v 0w v v v vy iy

The following case study will illustrate the use of many of the tech-
. niques and concepts that have been discussed in this section.
Inventory control, as used here, refers to the process of keeping an
up-to-date record of the status of every part in the inventory of a manu-
- facturing company. In the example to be studied here, we are given
a master inventory tape containing a record for each stock item. Each
record contains the part number and the quantity on hand. The object
of the inventory control application is to maintain this file so that it
represents the status of the actual inventory as of the most recent up-
dating of the file.
Changes in stock status are introduced into the data processing
system in the form of a deck of cards. Each card shows the part num-
29 ber, a code to indicate whether the card represents a receipt of more

.

a

A
i
A
1

It

L
I

PUT

—d 3
L

.

CLOSEQUTPUT | s e v v o v e vy e e e e

@ PEN

DA, .
Qu, |
END, |

1

1

i

1

|

1

i

!

I
lnAABAIIARAELAIDAAAAL,LllAJAllllllllAllNIOALIIJllllllJllllllLleij
|
L3
[}

J W
1

I S
i
Ly
i
L
t

| S W
i

|

)
PR T S S S

i
MU T S EONS U

D
LASTCD
MES SG. I
QUT PUT
CARD, ,

L

0.9,
1.0
Il
1.2,
1.3,
1,4,

0.4,
0.2
(]
0.4,
0.5,
0,6,
0.8,

Figure 6. Autocoder program to do the job diagrammed in Figure 5

23

stock items, a recount, or an issue to the manufacturing operation or
to a customer. There can be more than one card per part number, such
as when a shipment of stock items has been added to the inventory and
a shipment has been issued to a customer, during the period repre-
sented by the update. Again, there could very well have been several
shipments to customers during the period. Before the transaction deck
reaches the computer, it has been sorted on part number and classifica-
tion code in such a way that for any one part number, recounts are
first, then receipts, and then issues. This sequencing of the cards within
one part number will guarantee that if a large shipment is received
and another large shipment issued during the transaction period, for
instance, the data processing system will not erroneously indicate that
the large issue created an out-of-stock condition.

Recounts are coded so as to sort at the front of the transactions. This
is done on the assumption that the recount quantity is taken before
any transactions. Another common way to handle adjustments is to
enter them as changes, either plus or minus, rather than entering a
complete new count as we have done here.

The master file is in ascending sequence on part number.

Our job is to use the transaction deck and the old master file to
produce a new master file that shows the inventory status after the
changes described by the transaction file.

A block diagram of the computer operations, including card reading
and tape handling, is shown in Figure 7. The actions called for by this
block diagram are best understood by considering several situations
and seeing what the block diagram says to do for each. Suppose first
that there is a single transaction card for the first item in the master
file. We begin by setting a switch to what is called the ON position.
We read this first card and GET the first master record. We next
ask whether the part numbers in the transaction and the master are
the same. They are, by assumption, so we use the transaction code to
determine whether this is a recount, receipt or issue, and update the
master record accordingly. We ask if this was the last card. The
answer is no, so we read another card and return to the comparison
to determine whether the part numbers are equal. We assumed a one-
card group for the first stock item, so the comparison this time will
show that the master part number is less than the transaction part
number. This will cause the updated master record to be PUT into
the output area, after which we return to GET another master record.

If there had been several cards for the first part number in the file,
they would have been processed without writing the new master rec-
ord, by the repeated use of the loop containing the classification code
test.

If the first transaction card is for some master file record other than
the first, then all of the records prior to this one will be PUT into
“the output area before the part number comparison shows equal.

24

Start
OPEN Files
5 % T :)
y Read a Card)
Y gor/ GETOld e
CLOSE Files -“«—- Master e
Record i
Write Write Bad
Job Ended Data or File Switch OFF
Messuge Message
ON {S
. Halt omparé~_M<T PUT
Halt i M>T Part I'ilos Record in
; - New Master
M=T
Write Bad Not 1, 2, or 3_Fgssification
Code Message Code
1 2 3
ecount: Receipt: ssue:
Halt Repiace Mast. Add trans. Subtract
Qty with Qty to Trans. Qty
Trans. Qty from Mast. Qty
Last Card? N Read a Card
Y
Turn Switch
Off

Figure 7. Block diagram of an inventory control procedure

25

If at any time the part number of a master record turns out to be
greater than the transaction part number, then an error is indicated.
This could be caused either by an out-of-sequence file or by an incor-
rect transaction part number. It could happen, for instance, if the
first transaction card had a part number smaller than that of the first
master record. It is clear that in this case reading more master records
is never going to find a matching part number, since both files are
assumed to be in ascending sequence on part number, It could aiso
happen if a transaction card had a part number that was not the
same as the part number of any record in the master file. This test does
not give an absolute guaranty that no transaction part numbers are
incorrect, but only that if an incorrect part number does not match we
will catch it.

Suppose now that the last transaction card is a single-card group
corresponding to the last master record. This time the last-card test
will give a yes answer, which causes the switch to be set to the OFF
position, after which we write this last new master and go back and try
to GET another master record. This will be found instead to be the tape
mark, and the GET routine will take us out of the processing loop. We
shall see why another last-card test is necessary in a moment.

If the last master record has corresponding to it several transaction
records, then the analysis is the same as in the preceding paragraph
except that we will go around the updating loop the necessary times
before finding the last card.

Suppose next that the last transaction card corresponds to a master
record before the end of the tape. In this situation we must still copy
the remaining master records in unchanged form from the old master to
the new master. This is why the switch is necessary. After the master
record corresponding to the last item in the transaction file has been
PUT, all following master records are going to show larger than the
final part number. But now this is not an error. Therefore, when the last
card is detected, we set a switch to bypass the comparison and simply
read and copy master records until the tape mark is sensed and the GET
routine takes us out,

One final error possibility remains. The last transaction card might
have an incorrect part number greater than that of the last master
record. In this case, we would go around the master record reading
and writing loop looking for a matching master part number. Naturally
we would never find it, but would instead finally detect the tape mark.
Now, when we ask whether the card most recently read was the last
one, the answer will be no, indicating that the end of the master file
was reached without having reached the end of the transaction deck.
This is, of course, an error and we so indicate.

This is a very standard type of block diagram in sequential file data
processing. Its basic logic applies to many applications besides in-
ventory control and it applies when both files are on tape. Even the

26

reader who may not be directly concerned with magnetic tapes will
profit by a careful study of the logic of this block diagram.

We may now consider the details of the actual program for this
example. First assume that the transaction cards have a five-character
part number in columns 1 to 5, a single-digit classification code in 6
and a four-digit quantity in 7 to 10. The classification code is a 1 if the
transaction represents a recount quantity that should replace the mas-
ter record quantity, a 2 if it represents a receipt, and a 3 if it represents
an issue. The master records each consist of a five-character part
number and a five-digit quantity. The master tape is blocked with 20
records in each block. If the last block is not full, it is padded out
with blanks.

The program for this job is shown in Figure 8. We begin by open-
ing the two files and reading a card. OLDMST and NEWMST are
the names of the two files; these names would have to be in the
DTF macros for the two files, which we are not showing. The DTF
macros would also specify, among other things, the blocking factors
for the two files, and would name EOR as the routine to which the
GET routine should branch when the end-of-reel is detected in read-
ing the old master,

Next, an old master is placed in the work area. The switch is coded
as a No Operation, so that it will have no effect until it is changed to a
Branch. After this we compare the part number of the transaction from
the card with the part number from the old master. The next two
instructions branch out to the appropriate routines for the cases where
the two are not equal. If they are the same, we reach the three branch
instructions that determine whether the transaction is a recount, receipt
or issue.

This testing of the classification code uses a new variation of the
Branch instruction, called Branch If Character Equal. This instruc-
tion says to branch to the instruction shown in the I-address if the
single character at the B-address is the same as the d-character. If it
is not, we go on in sequence. This is used here because we do not like
to assume that the classification code will always be 1, 2 or 3. This is
placing a little too much reliance on fallible human beings. Therefore
we test explicitly against all three codes, branching to the correct in-
struction when one of them is found. If the code turns out to be not any
of the three, as it could through mispunching, then we write an error
message and halt.

If the transaction is a recount, we replace the master quantity with
the transaction quantity. If it is a receipt, we add the transaction
quantity to the master quantity, and if it was an issue we subtract the
transaction quantity from the master,

Setting the switch is a simple matter of moving a B to the operation
code, thus changing it from a No Operation to a Branch.

27

panuijuos) g ainbyy

YT T T -N._

T T T T T LI S §
€ - % H

LA S S S Sun M S S S Sunk EREN SENLANNS SN BN L BN ..A.;‘ﬂaa

T
|
T
b
|
I
t
S L RS S LT B :
T 39VSS3IN AN 801 3ILIUM 01¢ £9SS3aN VI _
e T T ORI N T TS W TO[T S 5 TRIVER T
SIS 1L MMk e) B R B A
T
!
T
|
T
i
!
|
T
1

<-44-_._.._<.1<.<.<._-_.q_-q.-.n..<.-<<q-.<..<.... <._<;

T T

A A A YT I.8_24......<4_...<..QN.Nq..N.O.m.w.Mf
..4._..<...<<<<.0.<Q.m_<.u..._..m.<.|_.......4.4.....‘ TV EM

v o1
D8
T T i A M T R

¥ T-T

T T T T T TN WAN CLSWa el 1nd
(] 5% (1] 3]2 3 ot 114 Te|0 9ISt) R
i - ’ GNV¥3dO Hosed 12907 aun

T J° Mz'°N aboy

£ @1nB1y Ul pawwoiBoip 31npa304d [01;u0> A10judAul ayj 4o} woiboid Japodoiny ‘g aunbiyg

S S T A R e e e e o o o o o o e N 0 B B e e s s s o s 2
TTT T T T T T e T T T T T T T T TS TIIMS T U EMS[T WO .<_m.h%wim MK
TR AONYYE 8 advy avaIg — oN T T T T T T W[T Ty T T T T T T T eR
U A U M VIE 2 B RE MAAEA A A A S A M3 X IR -] IR WG| IO
T T T e T T T e T T T T T O S W AON YL s T T T Tans’sT e
q«~<.<.___<4444.<d._<...q~.._<__....._.<14«....r.w_w.._..0_l____qm._.“..._.4~.4_
Ty T T T e e e e T T T T T T O TR TSN T ATON YL T T Ty T T T Tad o3| e
....._-._4_..._..4.__4__._..4.._4....._._.<__.‘_.qwdw.._..U.J___.m...“...._.m:
YT e e e e e T T T T T T T T T USW UATONY Y L] T Mon] T T T INRfe 03| e
I o e L S B B v I BT
.-44«.........._4..___._dqq.<._<4.....4......_.._.._4«..>><_.ﬁ..44.lu<_%
T W@ e 1 LeN 3T wewya T TTTTTIgee oSS AW T vo[T T T T T T T T T T
T T T T T T T T T T T T T T T T T T e gTe o anssI| 3o T T T T T T T ot
T T T T T T T T T T T T T T e Ldo3y| T T3ogl T T T T T T e
T T T T T g ge s Ls3L T T I T3ae 0 NNe oY 3oe| T T TT T T T]Teo
"M@ HILSYW 4T IlIum @i e9o o TorrorrrTmrmTmEmmTgltT gt T Tt T T T
"TTTTTTHO IH HALSYVW AT wewwa T T T T T T egy3l T e T T T T T T T[T
T T T T T T T T T TN T IS W ONGN YL T T T T T T T dWe o] SO
WILVT HONVE 8 @1 d3I9INvHDI do T T r T m T T gl T e N T oL ImMS] 00
.4<<....._.+_<4q...<.._.._...4.<a.4...........P.%.E.O.J.Sq-F.w.O.,.“.E.Q.<4N.m €0
T T T Y Yy v avay e e Tyt TR
MR A A L A A S A<4._..w<<‘<3.w_Z..w._.<m<2.D.J.S <Z.u.&.s ..4M<._..m.<.hw 1o

72) 09 15 0% [13 (13 3 3 3¢ T
ANVY¥3dO

9lS
19901 aury

2
¢ 40 I'MIToN aboy

3

of
70

2

Page No.13

§0

55

OPERAND

45

35

30

25

1411411171171 1] The Define Area instructions perform a new function for us in this
1113311111111 rogram. Notice that following each DA there are a few lines with no
711713111111 111 prog g
1444444441444 operation code. These are part of the DA, defining fields within it.
1111111111117 The first location of the defined area is considered location 1. The
1444444444444 high-order and low-order positions of the fields are punched beginnin
g p p g g
113117 ﬂ 13131117111 with the leftmost column of the operand field. These two numbers
1444444447114 1 are separated by a comma. The processor places a word mark over the
11371711 ; 11171771 leftmost location of each field defined in this way. The fields within
111111414414 11 v the defined areas may now be referred to symbolically, without, of
1131713133171 711717]1 ‘ course, our knowing where they are located in storage. Both tapes
111111111111 have blocking factors of 20, which requires setting up sufficient space

144444444714

144441131171 ' in the input and output areas for 200 characters.

1111711111711 The wrap-up for this job consists simply of closing both files and

11111111 111 writing the “job finished” message to the operator.

1133311311171 11 This case study has been deliberately simplified to let us concentrate
114141441 1 :"_"1 14 1 on the tape operations involved. It should be realized that a normal
1131717171311+ 711711 inventory control task includes a great deal more than we have shown

11441415 ;— 11 4 1 here. Furthermore, we have taken as straightforward an approach

11113111 117117]1 to the tape manipulation as possible in order to keep this first sample

111117 p g‘ 11 1 A of work with blocked tapes as uncomplicated as possible. Section 10 is

% I I S R (5 7 T I O devoted entirely to a thorough study of a more nearly complete in-

y g y y P

111171 10}l 17111 ventory control application, both from an application standpoint and

1414 4 4 A 2. :_ {1 4 1 4 from a programming standpoint.

49 4 4 4 444 A 4 I

4 4 4 4 o4 4 A x| | 4 4 4

- B - - -4 - u uJ. - -4 - -

]] j]] | o.] ©-]] . .

111171 1sl€9] 1 711 Review Questions

1171717 1o]w]uw]])

b 4 & - - - E << Id -] - .

1 1ol 7 Jo]v]alew] 1 11 - 1. In the program of this subsection, when would the re-

1] _': 1] “‘E : «] ;- {1 4 4 sult of the last-card test following the tape mark test ever

1 1> 1 19<s]+] 1 171 be yes?

- Jo] Ju }

1121 110 1w 1 1+ 1 2. Suppose that the last card of the transaction deck were

]l -] 1o]—jo] 4o el] .

1 1x]w]] <] ol s]@] <]] inadvertently placed at the front of the deck. What
o olo] 4 4] (% 1@ @_ @' -]] would the program do?

—la] =] 0] & » .

T 1T T T I T T T T 1T 71 3. What would the program as shown do if the old master
sis] 1171 1512224] ’ file erroneously had two records with the same part
olora] 1 J<lo] v]o]o]z]] , number?

w o oclololo]lolw]]
T T I T 1 T 11 1 4. Why is it more convenient to have two card-reading
{ {41441 43137117 ¢ instructions than to have only one?

J-1-1 J-1-1-3-1-1-3-3-3-1

FII S) B R (s () Brv)) A

a]] ao]w] Z] >] v o] o] o] 1% E i

Zlw ziZ]a]lo] Ewuvn«] 1 Xercises

<ol g o] H] 2] v v]n o "‘,og

x] e] d] v wn | wlw] =]]] . . !

ol mle] 5 =] E_; = 5, 149 *1. Given a tape with unblocked records of 100 characters each,

Ao e vl i o] o] o] -]]] g with a tape mark following the ‘last record. Draw a block. diagram

oloolod ol 0l 6]l ol o] -] -] -1-] & and write an SPS program to print each record exactly as it appears
30 on tape. Each page of the output is to have a maximum of 50 lines.

31

2. Given a tape with unblocked records of ten characters each,
consisting of a four-digit account number and a six-digit dollar amount.
The records are in ascending sequence on account number; there are
duplicate account numbers. At the end of the tape there is a tape mark,
followed by a trailer label, followed by another tape mark. Positions
6-10 of the trailer contain a count of the number of blocks in the tape.

Draw a block diagram and write an SPS program to summarize
the amounts by account number and make a block count check.

3. Estimate the time required to execute the program of Exercise
2, assuming that there are 10,000 blocks on the tape and that a 729 1I
tape at low density is used.

4. Draw a block diagram of the operations necessary to read a
block, check for tape errors, and reread up to nine times if there
is an error. If the error persists, an error message is to be written.

*5. Modify the block diagram and program of the inventory con-
trol case study as follows. Another type of transaction, with a code
of zero, may be present in the deck: an addition. An addition record
represents a new part number, the record for which is to be added to
the master file. However, do not add the new record to the file if it
has the same part number as a record already in the file. “Adding”
the record to the file consists of getting the card record into the proper
tape format and moving the part number and quantity to the output
area.

6. Modify the block diagram and program of Exercise 5 as fol-
lows. A fifth type of transaction, with a code of 4, may be present in
the deck: a deletion. A deletion record represents a part number the
record of which is to be deleted from the file, that is, not written into
the new master. Write a short tape containing all deleted master
records.

*7. Given two tapes having the same record format: a four-char-
acter employee number, followed by 90 characters of information
about the employee. Both tapes are in ascending sequence on employee
number, and there are no duplications. Draw a block diagram and
write an Autocoder program to merge the two tapes—that is, produce
a third tape containing in ascending sequence all records from the
two input tapes.

8. Same as Exercise 7, except that a sequence check is to be
made on both input tapes. This will require storage of the most recent
employee number from each input tape, to use in determining whether
the record just read is greater than the previous—for each tape.

32

