Principles of Programming

Section 6: Address Modification and Loops

EM Personal Study Program

© 1961 by International Business Machines Corporation

Section 6: Address Modification and Loops

6.1 Computations on Addresses

We have seen in previous sections that instructions are stored within a
computer in much the same way data is stored. An instruction is made
up of the same characters that are available for storing data, the in-
struction characters are placed in the same storage as data, and in the
1401 instructions are required to have word marks in their high-order
positions just as most data words have. As long as an instruction is
simply being stored, it is literally indistinguishable from data. It is only
when an instruction is to be executed that any differences arise. The
fact that in the 1401 instructions are brought from storage in a left-to-
right fashion, whereas data is accessed from a right-to-left, is really
only a matter of design convenience and is not fundamental.

The one thing that actually distinguishes an instruction from data
is the time at which it is brought from storage—that is, during the in-
struction phase or during the execution phase. If a word is read out of
storage during the instruction phase, it goes to the control registers and
is treated as an instruction. If a word is read out of storage during the
execution phase, it goes wherever the operation code dictates that it
should go to execute the processing prescribed by the instruction. This
distinction between instructions and data is the same for all stored-
program computers. It does not depend on the fact that the 1401 has a
variable word length, or that word marks are involved, or that most
instructions have two addresses, or any of the other features of the 1401
that are not typical of all computers.

What significance does all of this have to us as programmers? In a
nutshell, the answer is that we are enabled to operate on instructions in
storage just as though they were data. If one instruction says to add a
constant to the address of another instruction, there is no confusion in
the machine in doing so. The first instruction, which calls for the addi-
tion, is accessed during the instruction phase and goes to the control
registers. The address part of the second instruction, on which arith-
metic is being performed, is accessed during the execution phase of the
first instruction. Similarly, if a Move instruction is used to transfer an
instruction from one place in storage to somewhere else, this is perfectly
legitimate. It is also permissible to have one/;instruction change the
operation code of another instruction.

The facility for carrying out processing operations on instructions is
-one of the most important aspects of a stored-program computer, In
short, it makes it possible to set up a program to modify itself, accord-
ing to the results of its own data processing operations. This ability,
combined with the ability to repeat a section of a program that is pro-
vided by the various branching instructions, is by all odds the most
important single feature of the stored-program concept.

For a first example of the application of this concept, consider the
following sales summarization problem. A previous computer run has
produced a deck of cards containing (among other things) a sales
amount and a code number that gives the class of merchandise repre-
sented by the sale. There are six classes of merchandise, represented by
the codes 1 through 6. The merchandise code is punched in column 43
and the amount of sale in dollars and cents is punched in columns 17
to 22. In this highly simplified example, we are required only to print
in a single line the total sales of each merchandise class. The required
printing positions are:

Merchandise Class Printing Position
1 1-10
2 11-20
3 21-30
4 3140
5 _ 41-50
6 51-60

This example presents only one problem: How to determine to which
of the six total accumulators the sales amount on each card should be
added. The reading of the cards, the last-card test and the printing of
the total line will cause us no difficulty. The choice of the proper ac-
cumulator could be handled by a series of comparisons and branches,
or somewhat more conveniently by the use of an instruction that we
have not considered, the Branch If Character Equal instruction. How-
ever, by either of these methods, the testing and branching would run
to 15 or 20 instructions—which makes us wonder whether there might
not be some simpler way to accomplish the same result.

Indeed there is a simpler way. Consider what we would get if we
were to multiply the merchandise code by 10 and add the product to
200:

Merchandise Code 10 X Code + 200

1 210

' 220
230
240
250
260

N UL B W N

Thus it appears that if we carry out this simple computation on the
merchandise code and use the result as the address of an instruction,
then in each case we will have the address of the proper field in the
print area. Since the entire computation produces only one line of out-
put, there is no reason not to use the print area itself for the six accu-
mulators. Therefore, once the address of the proper position in the print
storage area has been computed, it can be placed in the address part of
an Add instruction and the addition performed in-whichever accumu-
lator is specified by the computed address.

Since we are concerned in this example with other things, the pro-
gram in Figure 1 is shown without the initial housekeeping operations
of clearing storage and setting word marks. After reading a card, we
proceed immediately to compute the address of the accumulator to
which the sales amount from this card should be added. The address of
this accumulator will be developed in a three-position field which has
been given the symbolic address WKSTOR, for working storage. We
begin by moving the constant 200 into this working storage. Then the
merchandise code is added to this field with character adjustment of
minus one, which has the effect of adding the code into the tens posi-
tion of the field. Therefore, the sum in WKSTOR will be 200 plus ten
times the merchandise code, which as we saw is the address of the
proper accumulator. This address is next moved into the B-operand
address part of the Add instruction, which follows immediately. This
is done with the MCW instruction in which the B-operand address is
COMPAD with character adjustment of plus six. Looking at the labels
in this program, we see that COMPAD is the symbolic location of the
Add instruction. Remembering that the location of an instruction re-
fers to the location of the operation code, we see that to obtain the ad-
dress of the rightmost character of the B-operand does require char-
acter adjustment of plus six. /

The Add instruction which will form the sum is shown with a
B-address of 0000. This is to remind us that this address is computed by
the program itself. The situation is this: When the object program is

Joaded into storage, the B-address of this instruction is 0000. However,

by the time the instruction is executed, the program itself will have
placed the address of one of the six accumulators in this part of the

_instruction.

With the sales amount added to the proper accumulator, we make a
last-card test. If this was the last card we branch to print the total and
halt; if it was not the last card, we branch back to read another card
and repeat the entire process.

It is important to realize just what this example shows: that compu-
tations on addresses are possible and useful. This particular example,
however, is unrealistic—for a reason that is important in itself. What
would happen if a merchandise code were mispunched, and entered the

i
L

of !
"2
L

[
N T S

PO SO W W VU S R 1
OIS S VU SO M S S Y
PR S S S

PR SO W SRS W S T 1
PO R W T S N1
PR Y

U S T T S S W 1
PRI U W W W T Y

PR N S ST S ST S

i
i

COMMENTS

Identification g

Page No.

PR S
PR S VAN S SR S W |

PRV T W AU T S WY S

RS VA T WY TUUN VAN SN SN VU U AN T SN W |
RS S N S Y SO T WS VS N W S SO S 1
S N R NN AN WY TUN SN S S ST S S 1
F U S SO TN VU WU T WA S T WS S P |

D S T T T
YD T S S W
PURT S W S S
PR T S S
hdehd b)
P T N S S
PSP N VT N W |
PR S W S S U1
heded &

cC#MPUTED ,B-ADDRS
PRINT, TOTALS, ,

sTOHRE, ADDRESS, , ,
alL.AS, 7, ,CARD, ,TEST,

ADDRE,SS ~
COMPUTATIPAN, |

ND

A

-10,0.1
+10,0 6

{8) OPERAND

ADDRESS
W, KS T @R
W K.S T @R
COMPAD

Coding Sheet

2rj28

Dote

CHAR.
ADJ.
"

X

23

i
s
)

1401 Symbalic Programming System

(A} OPERAND

ADDRESS

C.®0,E,
S,ALE,
PRINT,
0022,

14

wl|c,2.0,0,

I
1
|
1
)
i
]

8, ,
ENDO|READ, , ' | ,

M CIWWK S THR

COMP AD|A
oclwi¢ |

L e,0|0 3wk, T,8,RID ClW|*,

1,30

OPERATION

Ell.
D.S|

M.C
A,
w,

"
i

L
L

s

LABEL

READ,
PRINT,
SALE,

d
?

count
N
L
L
L

.

Progrom
LINE
40

ik

Figure 1. Program illustrating address computation.

1,1,0/03[C20,0 |

0,1,0
0, ,2,0
0,4,0
0,5 0
0,8 0
1,0,0
2,0,0

computer as 7 or K? The answer is simply that the program as written
would carry out the address computation on the bad code, and then add
the sales amount to whatever location it computed. The result would
be at least wrong—and perhaps disastrous: the program might well be
destroyed by the addition.

The point of all this is that one should think twice before putting so
much faith in data. In this example, we could make a check before the
address computation to determine that the code really is a digit between
one and six. Different ways to guarantee the correctness of a computed
address may be found in other situations.

In any case, the example illustrates well the principle of address com-
putation, and perhaps gives a hint of the usefulness of the technique.

Review Questions

1. How does a computer distinguish between instructions
and data?

2. Would the concept of storing instructions like date and
the consequent ability to perform arithmetic on instruc-
tions be significantly different in a machine in which in-
structions have three addresses?

3. Why was it necessary to develop the address of the cor-
rect accumulator in a working storage area rather than
directly in the address part of the Add instruction?
(Hint: Consider what would happen when the second
and subsequent cards were read, and what the word
mark problems might be.) :

4. This particular program is completely dependent on the
fact that each of the printing fields is exactly ten columns
long. Still using the same basic address computation
technique, how could you change the program if each of
the printing fields were 15 columns long?

6.2 Program Switches

For another example of the concept of a program modifying itself, con-
sider the “storage” of decisions, through the use of program switches.
It not infrequently happens that a decision made at one point in the
program has a bearing at one or more later points. Sometimes it is pos-
sible simply to repeat the branch instruction that made the decision in
the first place. In other cases, however, the information on which the
decision was originally made is no longer available—or it may happen
that the decision involves a nymber of instructions, making it wasteful
to repeat them when the result of the decision is needed later.

When such situations arise, it is desirable to be able to store the result
of the decision. This can be done in many ways, One possibility is to
store either a zero or a one in some location, depending on the outcome
" of the test. Then when it is later necessary to know what the result of
the test was, this storage location can be checked to see whether it con-

tains a zero or a one. The most common technique, however, at least

_for storing the results of two-way decisions, is to change the operation
code of instructions.

This instruction modification is most frequently done using the un-
conditional Branch and the No Operation instructions. No Operation
is an instruction that causes no action to take place anywhere in the
computer, Stated otherwise, there is no execution phase on this in-
struction. It is provided partly for such situations as we are describing,
and partly to make it possible to eliminate the effect of unwanted in-
structions when it is not feasible to reassemble. It has many other valu-
able uses. The operation code is N and the instruction may have any
of the other parts of the instruction; any other parts besides the opera-
tion code will, of course, have no effect.

To describe the operation of program switches a little more con-
cretely, consider the following situation. A comparison is to be made
early in a program. If the comparison shows equal, then at three subse-
quent points in the program it is necessary to branch to special routines
to handle this case. I the comparison shows unequal, then at each of
those three points the program should continue in sequence. The tech-

_ nique is to write the three Branch instructions at the points where the
" program should transfer out to the special routines, as though the
branch would always occur. When the test is made, one of two short
routines is executed. If the test shows unequal, then the operation codes
of the three Branch instructions are changed to N. If the test shows

" equal, the three operations codes are set to B. When the three instruc-
tions are subsequently executed, they will either cause the Branches
or allow the program to continue in sequence, depending on what the
result of the test was. ‘

It actually is necessary to go to the trouble of setting the operation
code of the three switches for each outcome of the test. It might be
thought that if the instructions are originally written as Branches, then
they could simply be left alone if the initial test shows that the branch
should be executed, and changed to N’s if the program should continue
in sequence. This would indeed work correctly the first time through
the program and possibly for a few later executions. However, as soon
as the operation codes are once changed to N, then they need to be reset
to B’s if the Branch should be executed. k

Naturally there are many other programming techniques that can
be used to store the result of a decision. One that comes to mind im-
mediately is the possibility of changing the address part of a Branch

instruction. The choice of the method to be used in setting up a pro-
gram switch depends on such factors as how many different possible
outcomes the decision has, how many places the switch must operate,
how much trouble it is to repeat all or part of the original decision, etc.
In other computers, the choice will also depend on the programmmg
characteristics of the machine.

In all cases, however, the general principle is simply that a decision
made at one point in the program is being used to control the subse-
quent action of the same program on one or more later occasions. This
further example of the modification of a program by itself finds fairly
frequent application in many programs. We shall see a few examples
of the technique in later sections.

Review Questions

1. Describe how a program switch could be set up using
modification of the address of a Branch instruction.

2. Does the concept of a program switch depend on using
the result of a decision at more than one subsequent
point in the program?

6.3 Program Loops

It must be readily apparent that a program involving no repeated ex-
ecutions of instructions would not be practical. If a program were only
able to proceed sequentially through its instructions and upon comple-
tion had to be replaced by another program, then it is clear that the
stored program computers would be of little value: most of the time
would be spent in loading instructions.

Fortunately, however, there is no such restriction on the organiza-
tion of programs, and a whole body of technique has been built up
around the methods for repeated execution of program segments, This
technique is known as looping. We have, in fact, already seen a number
of elementary examples of loops. The illustrative program in Section
5.1 is a loop in the following sense: After some preliminary house-
keeping operations, we read a card and perform certain computations
on the data read from it. Then we test the last card indicator to deter-
mine whether all of the cards have been read. If not, we return to the
instruction for reading a card and repeat the entire program except
for the initial housekeeping operations.

We have here almost all of the normal parts of a loop. There is an
initiglizing section, which gets the loop started properly and is only
executed once. There is a computation section which does the actual
work of the program—in this case, reading a card and performing the

calculations. There is a festing section which determines whether the
work of the loop is completed. Most loops also contain a modification
section which changes some of the instructions in the computation sec-
tion of the loop or changes the data on which the computation section
operates. In a certain sense, even the simple program in Section 5.1
has a modification section if we regard the reading of a new data card
as a modification of the data being operated upon.

This example is a loop that consists of an entire program, which is a
rather broad application of concept. We more commonly find loops
which are only small segments of a total program. Frequently, one loop
has within it one or more additional loops. The sales summarization
program of Section 1.3 can be viewed in this manner. The innermost
loop is the one that obtains the sales total for each salesman. This loop
is “inside” the loop that computes the totals for each district and this,
in turn, is “inside” the total program loop that reads the entire deck of
sales cards. In each case there is an initialization section. This consists
of the housekeeping operations for the total program loop, and of the
special handling of the sales amount on the first card of each group for
the other two loops. In each case, there is a computation section; this
must be applied broadly in the case of the total program loop since it
consists of all of the operations contained in the other two loops. In the
two summarization loops, the computation consists of the summariza.
tion and of the processing that is done when it is found that the last
card of a group has been read. In each case there is testing, in one case
to detect the last card (although this test was not written in the pro-
gram earlier), and in the other two cases to determine when the first
card of a new group has been read.

The loop concept provides the best example of the unique power of
a stored program digital computer. It is probably the most important
single topic in the study of programming. We shall see immediately
below that one of the most powerful types of loops involves the repeti-
tive modification of the instructions within the loop itself, most com-
monly the addresses.

Review Questions

1. Name the four parts of a loop and give examples of each.

2. Must the four parts of a loop always be executed in the
order in which they are named in the text?

3. If a loop is only used once in a program, that is, never
started again with new data, is it logically necessary to
initialize?

6.4 Address Modification Loops .
In this type of loop, we have as before the four parts of initialization,
computation, testing and modification, although not necessarily always
in that order. The modification now consists of changing one or more
addresses within the computation section of the loop. The testing most
commonly involves determining whether the computation section has
yet been carried out a specified number of times.

For an example of this type of loop, consider the following inventory
usage application. A deck of cards contains one card for each part in
the inventory of a certain manufacturing company. Each card shows
the part number and the usage for each of the twelve months of the
calendar year. The task is to produce a report with one line for each
part, showing the average monthly usage of the part and the number
of the month in which maximum usage occurred.

The card format is as follows:

Columns Field
1.8 Part No.
913 January Usage
14-18 ‘ February
19-23 ~ March
24-28 ' April
29-33 May
34-38 June
39.43 July
44-48 , August .
49-53 September
54-58 October
59-63 November
64-68 December
The format of the report is as follows:
Printing Positions Field
1.8 Part Number
12-16 Average Monthly Usage
20-21 Number of month of maximum usage

This program may be thought of as consisting of two parts: dividing
the sum of the monthly usages by 12 to get the average, and determin-

- ing which of the months has the heaviest usage. In the final version of

the program these two parts will be combined in one loop. However, to
get a clear picture of the workings of an address modification loop we
shall first write a program to get the average only, and later add the
instructions for finding the heaviest usage.

After reading a card, the object of the summing loop is to add to an
accumulator the usage for each of the twelve months. This of course

9

could be done with a Move and eleven Adds. However, we shall see
that it can be done with fewer than twelve instructions, in the following
manner: We begin by setting the accumulator to zeros in order to
remove the sum developed there from the last card. We also set to zero
a two-position counter that will be used to determine when the last
monthly usage has been added to the accumulator. The twelve monthly
usages are picked up from the read area by a single Add instruction,
the address of which is modified each time through the loop. Since
after reading one card this address will be incorrect for starting the
accumulation of the usages from the next card, we initialize this address
by setting it to 13, the address of the first data field.

Each time around the loop another data field is added to the accumu-
lator, the A-address of the Add instruction is increased by 5, and 1 is
added to the counter. A comparison is made each time to see whether
this counter has yet reached 12. If it has, then all twelve monthly
usages have been added into the total and we are finished; if it has not,
then the loop is repeated. When the total usage for the year has been
developed, we divide by 12, print the line for this inventory item, make
a last-card test and, if cards remain, return to the Read instruction.

A block diagram of this procedure appears in Figure 2 and a sym-
bolic program in Figure 3. Once again, the program is shown without
the preliminary housekeeping operations of clearing storage and setting
word marks. In the program a new instruction is used to place zeros in
the accumulator and count fields. The Zero and Add instruction is just
like an Add except that the B-field is cleared to zeros before the addi-
tion takes place. This instruction is therefore analogous to a Move or
Load instruction, with the significant difference that in a Zero Add the
zone bits of all but the low-order character are removed during the
transmission. This feature itself is often of value. In our case, the advan-
tage of a Zero Add over a Move is that we can set up a field consisting
of only a single zero and clear the entire B-field. What the instruction
actually does, in our case, is to clear the entire B-field to zero and then

add the one-character constant of zero that we specify with the
A-address.

Zero and Add
A
FORMAT Mnemonic Op Code A-address B-address

ZA ? XXX XXX

FUNCTION The entire B-field is set to zeros, then the data from
‘ the A-field is moved to the B-field with zone bits
stripped from all but the units position. If A is
shorter than B, zeros are placed in the high-order
positions of B, ‘

10

Start

Read a Card

Initialize
accumulator,
counter,

Add g‘gd[g;;
Add a month'’s

usage to
accymulator

)
Add 1 to ctr
Add 5 to
Add address

Multiply by
1/12 to get
average. Put
in print area
L]

Move part
number to
print area

Write a line

Last card?

Stop

Figure 2. Block diagram of a procedure to compute the average of twelve numbers on
a card.

1

penuljuo) ‘g aunbyy

T r 1 751 7 1t 1 T @ T 7T 7 71 1t 7 T 7 T T 1 ¢ ¢ ¥ T T T 7 T 1 T T T T 0'0'2
—TT71T 1 1 r .1 rr 1 1 17T __"“_—_q— __"“<.—<_ “_ LI SR B | T °-.__
T TV T r T 1 Tt r T 1 1 T T°7 __“.ma-_u_ __.Mmd__-_ m_ L L B A ¥ O_-__
T T 77 1 11t 1 1 17 __"“__-_d -_““—____ "_ T T T T O_F__
™ v 1 1 r 1 1 1 1 1 1T T°7 -_""__-_ __““_-4-_ "- T T T T O-O-
L L L L L L L L L I L 1 L T To"s™
LU I SR S S S R B AL UL L T 1 v v T T 1 1 r 7 T LI S T PR
LIS ERO RN S SN S M SR R SN BEMN S S B _—""_____ __""d__.. ". T T T T PR
7T 1 r 111 1t T T7T°7 —AMM___A- _-"m-_-.. m_ T 1 1 17T T O_O._
R Ty T ._m"_hmi_hmo“z_ud«___.o;_om
T rr e oot 24 T T T¥[mjo’a] T3TATAML[2 0] 0
A T gelglesol T "¥mpd’a] T T T "idfg'gjoLTe
R TGl 1 ¥(mpdTa[T T3TATITA[1Tofo"e e
N T T Tx[mioTa] T T TAN'gliT0foTs7e
R T T T g 1ol | 7 " '¥fmdafa’ad’'v iNI[gof° v
Tty T 7o) 1 T " "¥[mjo’a| " Tgu'3’Z[170foeTe
MR T T T U T T¥jmio’al T1'N'n‘@’dz27ofo"E e
AW 8703 "VHDI b T T T T T T Tx[myo"al TWinToo'w]p e e
[ov|ss sln oy 1 43 82 hlw ‘ray €2 Lo 1411 8| 9ls [3
SLNINMOD p|B] wwo [* s S| wwo |* s NOILYY340 1387 wnoa| 3NN
ONVY3dO (8) aNvH3d0 (V) _

2 49 Tzl ©°N 9bog

. s - i SN . s S
7 @inB14 u) powwoiBoip s ‘960180 up 9ynduiod o4 wosboiy ‘g 2unbiy
™ rTrrrr. T 1 1.1 1 7T T 71 7 1 1 1 ' 7 LI | T T 1 1 T 7 T 7T T T T 7T T o o'z
o 1o 1)
T T T 1 T T T T T T T T T T T T T]] T T T T T T T ¥] T T T T T T T T T T T T T °—0<_
T ! ! T ¥ T T T T T _ ! T T H T T " T T T T T T T T ¥
T T T T T T T T T T T T T T T " " “ ” H I) ® i
1 T T T T T T T T T T T _wqw_> T ¥ " " T ¥ T T T m_o_ O“IH T T T T _* " _I T -P_mq<ql— T O_F_-
T T T T T T T T T T T T _Q_z T T " u T T T T T T T “ " _-F_m_<_nr.m " _m T T T T T T 0_0__
T T T T ‘—o_ _0_1_4_0— —k—w_<_J < T T " " T T ¥ T T T T “ “ T -P_w_<-J " _m T T T T T T o-ﬁ_-
L) T T T T T .-—-_z_H—m-m_ _o_z_< T T ” “ T T T T T T T " “ T T T T T " -; T T T T T T O-'_—
T ¥ T T T T T T L) T T T _&_D T T “ “ T _m_o_Ndo T T " " T _an-O-o wuo-z T T T L) T T O_nq—
T T T T T T T T T T T -F_waw T T " " T _w_—-N—o w<o_o"-“ _2.:«0_0~< mnoqz T T T T T T O_N——
T A T T T T T T T —o.z_D_s_m m_O-O“ “ _§-D~0_0_< T T " “ l _u~>-H_u " << T T T T T T O__._
-N_——_—_ T _IP_I—_D-E— T Jm_m_* T T " “ _2-3_0_0_4 T T “ “ T T T T —.o “ .2 T T T T T T 0_0_.
T 1 T T T T T T T ¥ T T T ﬁs<z T T " “ T T T T T T T " "m_z_H_o-qu “ _m T T T T T T °-¢-° u
T T T T T -c. _o_w_I<m.H.Z<H-u T T " " _u_>_ld-;_-r T T " “ _IF_Z—D_S_U “ _Q T T T T T T O-._O
¥ T T —v_m-°_°_<_ T —m~<_>_ _m m_°_°n+”m_z_H_°_o_< T T " " T _u<>_H.u “ _< T T T T v T O_B_O
T T _ar_z_:_s<o_ _>.h—H_o_s_5 T T “ “ AF.Z«D_Q_U T T " “ T T _m—z_s " —< T T T T T °-‘.°
$s 39 aaV '318VIEVA 20°0)—] 'Wn2 0V T T 1T 0000] ; 'v[s'NI'dav| " je'e'e
! |
T _m.m-u-m_odo_qd T —P_ H_Z<H n_o_°“+"m_z,—H_oqo_< T T u “o.o.qu—z_H ;“O_E T T T T T T °—'-°
—m.w—k_z_:-S-U_ -w_ ul—_<_kqe_h‘ T T “ “ —PAZ_D_Q_U T T “ “ T —Q—I-”—m m<—m T T T T T T °<ﬂ4°
T T T T -N_N_H_I—.q_H«-F.H_Z-H T T “ “ _2_3_0~°_< T T “ " T -u.m_m.m "<_m T L T T T T O-N_o
L] T T T T T T T T T T T T T T T T " “ T T T T T T T “ " T T T ¥ T “ _m -k_m_q_k—m T °—-.°
[orfec [8e v [[13 sln - €2 MED A 8[¢ 9]s €
SININNOD p | wmo |* ssauaav S| wwo | * ss3uav |NOILYY3dO 138v1 INNOD| 3N -
aNvY3do (8) GNYH340 (V) _

2 Jo T11oN ebog

WORD MARKS The B-field must have a word mark; the A-field
must have a word mark only if it is shorter than the

B-field.
TIMING T=.0115(L;+1+ Ly + Ly)ms.

The desired initial address of the Add instruction that picks up the
monthly usages is transferred with an MCW instruction.

The variable-address Add instruction, which has the symbolic label
of ADDINS, is shown with an A-address of 0000; this address is com-
puted by the program and will have some value other than 0000 by the
time it is first executed. After the first monthly usage is added into the
accumulator with character adjustment to add into the high-order part,
we add a 1 to the counter and add 5 to the variable address of the Add
instruction. This last is done with character adjustment to add the 5
into the units position of the A-address. It might appear that there is a
word mark problem here, but it happens that the attempt to propagate
carries when the 5 is added to the address will not affect the operation
code of the Add instruction. If it were desired to be double safe on this,
a word mark could be set in the high-order position of the A-address
before the addition of the 5 and then cleared afterwards.

Next the count is compared with 12 and a Branch If Indicator On
instruction tests for equality. If the indicator shows that the two are
unequal, we branch back to the Add instruction and pick up another
monthly usage and continue the loop. If the unequal indicator is off,
then the branch does not occur and we proceed to find the average.
This could be done with the Divide instruction, an optional feature on
the 1401, or by a programmed division routine. Here, however, we

have chosen to multiply by 1/12 rather than divide by 12, This is done
simply to save the time that would be required to describe division in
the 1101, since we shall have no further occasion to use it.

The constant 1/12, which is taken as equal to .083333, has six places

* to the right of the decimal point. Therefore, after the multiplication the
average can be rounded to the nearest unit by adding a 5 to the fifth
digit to the left of the units position. The rounded monthly usage is then
moved with zero suppression to the printing position, the part number
is also moved with zero suppression, the line printed, and a last-card
test made.

It is worth emphasizing what this program illustrates. We have here
a fairly representative example of an address modification loop. There

is an initializing section, where we put zeros in locations that could
have left-over data from the previous execution of the complete loop,
and where we start an address at its correct initial value. There is a
computation section, consisting in this loop of just the one variable-
address Add instruction. The modification section consists of the addi-
tion of 1 to the counter and of 5 to the address of the Add instruction.
The testing involves determining whether the counter has reached 12

14

and returning to another execution of the loop if not. The instructions
that follow the test are not part of this loop.

- Notice that the complete loop takes eight instructions, mcludmg the
initialization. Without a loop, the same summation would take twelve
instructions: one MCW and eleven Adds. However, the loop version
requires the execution of 63 instructions: three for initialization, and
twelve times around the five instructions in the repeated portion of the
loop. Thus we see that a loop saves space at the expense of time. This
is a completely general statement.

This example is quite important for what it shows about the way
computers are programmed. The student is urged to understand this
example thoroughly before proceeding. =

With this basic loop clearly understood, we can W1thout too much
difficulty extend it to include finding the month having the largest
usage. This can be done by starting with the initial assumption that
January has the largest usage. Then 1 is stored in a location that will
contain the number of the month having the largest usage. January’s
usage is then compared with February’s; if January’s is larger, then
January is still the largest of those considered so far and the 1 is main-
tained as the number of the month having the largest usage. If, on the
other hand, February has larger usage, then February’s usage is moved
to the location containing the largest usage so far and the 2 is placed
in the location containing the number of the largest month. This
“largest usage to date” is continually compared with each succeeding
month and either left where it is if it is larger or replaced by the other
month if that one is larger.

In order to simplify the loop, what we will actually do is begin by
comparing January’s usage with itself. Thus we avoid having to set up
a somewhat longer initializing section to get the loop properly started,
bearing in mind that along with this testing we are still accumulating
the total usage in order to develop the average. This may seem like a
waste of time, which it is, but it is worth it: we are saved the compli-
cation and the space that would be required to make the loop operate
differently the first time. This also is a rather general situation. Sim-
plicity is usually a virtue in programming, since it reduces the likeli-
hood of making mistakes. Furthermore, the time that might be saved
by repeating the loop one less time would probably be completely offset
by the extra instructions that would be required to get it started prop-
erly.

A block diagram is shown in Figure 4 and a symbolic program in
Figure 5. In this complete program there are a number of additional
things to initialize. Besides the accumulator and the counter, there are
now three variable addresses to start properly. January’s usage must
be moved to LARGE and a 1 must be put in the month number. This
last is transferred with a Zero Add to get the one-digit constant of 1
into the two-digit field.

15

‘¢ 9anB14 Ul pawwoibolp ainparoud ayy N0 AuiDd of woibBoid ‘¢ a.nbiy

T T T T T N Ty T Tl isN'Taav] 8] " "7] " ero’z
TTTT T 7T T@'3TH'S'I'N'T A HEEEEERAR T TINTRe s T ol T T T T T T JeTe™y
A €0 0/+|SN'TAG'W IR LV A 4]) A B R
T T TgTa’s’s’ 3w aa'y €00+ SNINWOD TP TTIIATTA L e[T T T T JeTem
N N X gooj+iSNTIQQAV EEERREES I I R
T T T TIINAg0T 0N T TI'NRTeO T T T TINNG|] Y[ATATTTae W T e
H'L'N'Q'W "1's73'9'd'v1’ '4'g TTUUONWLANewW [T T T TatNg e[T T T T T et
TTTeO'NT Te'LT TTTe'NT TITAGW T U INHLNGW T TN AT @OMOW] T T T T T T eTe T
W39'dv TOW 'STTHL T 7] 39yvn T 7 T "0'0’0’0[M{O'W[S'N'T'ATW T [or"
T w3aoW v 41 wan Ty T T RPN 3T] N R
T T T T T39Y'S'AT Td'We'D T T39'Yv "7 77 T 0000 | O[S'N'I'W@'D] " |00
s’gaav gV A - 'Wns I70"0]—] 'WNn' 20V T 1 7 00’00] Y|STN'ITaa'y[" [oeTe
T T T TN THLING'W TTTUINTHLN'G'W EERREE I R
T T TTey's'TnT NP TTUT 3To’d'v 0 T T TenirroTo[mpoTw| T T T T T T]eTeTo
L €00 +ISNIABW Tl v LUNI[MOITA T T T T T T TeTeTe
T T T T TeT3a’s’s'3TYa'a'y €00+ SNIWQD T Qv LN I[MITA T T T T T[T [eTsTe
AR N W A VA § 00+ sNIaav TToraTav LNTI(mo T T T T T T e o
T T Te3TINNeT0T T8 LA T T g3tz gwig] T T T T T JeTeTo
LA B A AN S VR ¢ I TH NN Ty T Ty 3Tg) v T T T T T et
IR TUL LT T T T T e[TaTdwlaTs] T JoTiTe
[ov |6¢ mln . e 82 \.Im ‘ray €2 Lpet vl 8L 91s 3

SININNOD , pl® .zﬂo:«o + Fesnaay S| wwo | ¥ seauaov NOILYH3d0 138v1 INAOD| 3NN

ONVY¥3d0 (8) ONYY3dO (V) _

2 o[771 oN 3bny

. B .
=

13

6

2 4

]

13

2

c

v

2

o

—_ z

= + < s

50 ~ T &

< w 5 -}

mEG.' NM o

o Do 2 ¢

c o< Ot H

= 2 dJ U

©

<=

£

Q o

2 E]

& g .

E %

-]
4 o T

o0

¢ w

, z > $=

< 9

® 2

- wr 2 — (S o B an.
s T N “ - ~ [TREEN o o o 52
] - .0 = o + Z » — O £ T o
(¥] = w X o c b= =) o O ji >loe ¢ 2 —_ = (-2
+ SZ5<% g ,.8 = P = 0220 o 3 5=
5 o OD8I 5 ELS Z0O v , 3§ 4 23z« O 5
& 3 0O 5 3 oo E =R T e 5 Bow S 2 % g2
9 <O - - - 99 O 1< o) £ 2 a = 3 g
- ct 5 0 t = O 507 z E

e 'L E8=||258 © Y 02 & 2 23
co£-=o 5

¥ E

5]

Z]

Anu
¢ s

55

o v

[

17

16

Jof 2
IQI

COMMENTS

1

Page No.|2,
,C,A\RD,

PIRlIlNlTl

RIQ|UINIDI
AlL AS T,

L

-'0.0.5

(B) OPERAND
1
1

1

ADDRESS
AlclclulMl
olzlzl'l

Iol6
8,3/3[3 3,

{A) OPERAND
H N

1

A1

i
1
1

ADDRESS
N.T
1

1
i

ch:w *L i 1 i 1 : :ll 1

SITAALRLTI

16]t7

!s|0,0,0,8,
sim o
w(x,
Wik

DCW¥, , i
Wik,

mclslaccum, i-
1
A
]
1
DCiW[* b,
D Clwlx
|
]
1
]
1
EIN:D SITIAIRITI : : 1 1

OPERATION|

M.C
M. C
BL
D.C
D.C
D.C

13114

1

1
1
i
i
1
i

LABEL
L.AS T,
GINIEI 1

Lot

1

L
i

| ,4/ACC UM,
1,2,010 2|1C QU N T,
1+, 3. 010 I [{ZER O

COUNT

LINE

1,4,0{03|INT ADD DIC:W*
2!°I° olelolNlTlHlN ch:w *l 3 1 1 i : : 1 A,

\s,0|0 I[FIVE,

' ,7,0|0,6{C I
1,8,0/0 2{TWLV.E,

;9,0 0: 5 L'lAlR 16 lEl

1,8,0|0 1

0,1,0
c,9,0
), 1,0

"Figure 5. Continved

The variable address Add instruction is as before. We next compare
the current month’s usage with what is so far the largest usage. The
first time through this will compare January with January, but no
damage is done and a few instructions are saved. If the one that has
been largest so far is larger than the current month’s usage, we branch
directly to the modification section. If it is not, the current month’s
usage is moved to LARGE, the count is moved to the month number
and one is added to this count. This is necessary because the count as
set up here is always one less than the number of the month with which
we are currently dealing. ,

The modification section is just about as before except that there are
three addresses to modify. The final instructions of the program are

the same except that the new field must also be moved to the print area.

Review Questions \

I. Suppose the COUNT had been initialized to 1 instead of
zero. What constant would have to be changed?

2. Suppose the COUNT had been tested before adding 1 to
it. What should the COUNT be tested against in this
case?

3. What would happen if a Zero and Add instruction were
used to transfer alphabetic data?

6.5 Indexing

; We see in the program just completed that a fair number of instrue-

ﬁ; tions were used in doing nothing but modifying addresses. In many

" programs, a fairly high fraction of the total instructions are involved

in operations that are required to get the program to operate correctly

but which do not themselves directly process any data. A valuable ma-

chine feature in reducing this kind of red tape is the indexing of
addresses. -

The basic idea of indexing is to leave the addresses of the variable

" address insiructions unchanged as they appear in storage, and to mod-

ify them with the contents of an index register each time they are

executed by the object program. Between executions of the repeated

portions of the loop, we can change the contents of the index register.

This will have the effect of changing the effective address but will not

actually change the instruction as it appears in storage. This is because

the addition of the index register contents to the address as written is

carried out in the address registers and not in storage. To summarize:

Instead of actually changing the addresses of instructions that vary, we

instead specify that before execution the address as written should be

19

incremented by the contents of an index register. This process does not
change the instruction as it appears in storage; we can get the effect
of a variable address simply by changing the index register contents.
In a loop in which only one address has to be modified, this pro-
cedure does not offer any strong advantages unless there are special-
ized instructions for doing combination operations on the index reg-
isters. Even in the absence of such features, however, the indexing prin-
ciple becomes very valuable if there are several instructions that have
_ to be changed, since the same index register can be used to modify any
number of instructions, The initialization now consists of just the one
instruction required to put the proper initial contents into the index
register, and the modification consists only of adding the required con-
stant to the index register. Furthermore, the index register now also
serves as a counter that can be used to determine when the loop opera-
tion is completed.)
In the 1401 there are three index registers, which are named 1, 2
- and 3. Index one consists of storage locations 087-089; index two
092-094; .index three 097-099.

To add the contents of an index location to the address of an instruc-
tion, we tag the address that should be modified. This is done, in actual
machine language, using the zone bits of the tens position of the
address, in the following pattern:

Tens Position

Index Location Zone Bits Zone Punch
1 01 Zero
2 10 Eleven
3 11 Twelve

On the symbolic programming sheet, it is necessary only to write the
‘number of the desired index location in the appropriate IND column—
that is, column 27 or 38.

When an indexed instruction is executed, the sequence of operations
within the machine is as follows. The instruction is first brought to the
control section registers just as it always is. During this process, the
.zone bits of the tens position will be detected as specifying indexing.
The contents of the specified index location are then obtained from
storage and added to the contents of the address register. The instruc-
tion is then executed. Notice that the instruction as it appears in storage
is not changed by indexing. (The index locations are, of course, not
changed either.) The address as modified by the contents of an index
location is called the effective address.

In order to change the effective address, it is necessary only to
change the contents of the index location, which may be done with ordi-
nary 1401 instructions. To do this, the index locations will oxdinarily
have to have word marks, since the locations are not treated any dif-
ferently from any other locations in storage, except as they are called
on by the execution of an indexed instruction. When the index loca-
tions are not being used for indexing they may be used for any other
purpose.

We may see how indexing can be used by rewriting the program of
the last subsection, The basic logic will not be appreciably different.
There will be fewer instructions, because by initializing the one index
location we initialize the effective address of the three instructions that
must have variable addresses, and one instruction that adds 5 to the
index changes the effective address of all three. Furthermore, the index
can also be used as the counter. We will write the instructions that are
to have variable effective addresses, with actual addresses of 0013. The
index location, which is chosen to be 1 in the program shown below,
is initialized to zero. Each time through the loop, 5 is added to this
location; loop testing consists of asking whether index 1 contains 60.

The block diagram for this program is shown in Figure 6 and the
program in Figure 7.

In this particular program it is still necessary to have a counter that
counts by ones to know the month number as we make the comparisons
to find the month having the largest usage. In this particular case it
would not matter much whether the loop testing were done using the
index register or by comparing this month counter against 13. In many
problems, of course, there would not be this choice. We see that even
though it is necessary to have what amounts to two loop counters, the
program is still somewhat shorter than the unindexed version. We note
that the three instructions that have variable effective addresses were
written with actual addresses of 0013 and that index 1 is specified in
column 27 in each case. It happens not to be necessary here, but it is
also permissible to index B-addresses.

This example nicely illustrates the power of the indexing technique
in reducing the auxiliary operations of an address modification loop.
Since we are concerned primarily with the concept and not with the
details of operation, we are omitting a complete description of what the
machine does in certain situations involving addresses over 999, and a
number of other matters that are important when using the 1401 but
are not crucial to the indexing concept.

21

‘Bugxapul asn o} payipow ‘c 2inbij Jo woiboid ay) /2 ainbiy
1xapul Y 13

T T T T T T T T T 1 T AQ_Z_< T T " “ T __ﬁN_NﬂO T T “ NZ_I_FAZ_S~§ m“O_E T T T T 71 T R
1 T T T T T T T H T T T ¥ _&_D T T “ “ T _mﬁo_N~o T —‘“ “ T _m_o_o_o m"o_z T T T T T T O_O_.
T T T T T T T T T T T T ‘F_w_w T T “ I T _0__~NAO o_o_onl_ _E_ﬁﬂ_o‘—o<< m“o_s T T T T T T O_Q__
_ ! T T T T T
T T T T T T T T T T T T TN T T T T [T T T T T T T T t] T T T T T T T T O_Fﬁ_
aNnNnQoy S00,—- WNOJV . AANT 4,V
—N<__\,_—_ _c_PAI.__:—E_ ~o_m_u_> T T m “ —E_D_oﬁo~< T T " m T T T __ﬁo “ _2 T T L T T T 0_01__
T T T T T T T T T T T T T _s_z T T " “ T ¥ T T T T T “ “m_z_H‘D_D«< " _m T T T T T T O_m_—
T T T T T _c_ _D_u_T__m_H.ZAH‘|1 T T " " —>.|—l_x_H_w T T " “ T _m—w_o_o “ _o T T T T T T O_Q__
T T T T _m_ _+_ q—_ _x_m_o~Z—H T T “ " T am_w_o_o T T “ " T -m_>_H_l “ _< T T T T T T O‘nA_
T T T T 7 T T T T T 4—— _Q_o_< T T “ "mdn_l_o‘—Iﬂnr_E T T “ “ T T _N_Z_Q “ _< >—u_H_o_s_E T O_N__
. S.z. .._. w_m <O m.q.l_, <.<S_Z T T " .Z«I_._._Z_Q_S_ | — 1 "I_._._O_I_._.ngﬁoqs_ T T T T T o 1
i]

R N W : T T 3odvafi] T T et i o o[moW[sINT AW T oo
T T _I_mgw—m_<_|~_ _u—.H_ _o—m_m D T T " " T T T T T T T " “>_k_H_o_s_2 “ _m T T T T T T Odm_o
T T T T T T T T T T T T T T «x T T " _ _w_o_mAq_ld — T T “ “ T qm_—.o_o " .o w_z_H_z_s<o T OAO_O
T T T T T T T _w‘ _D_w_x_wqo_ng N_O,_\o“II" _E_Dao_o_< — T T " " ¥ _m«—_o_o “ _< mAZ—H_O.D_q T O_F_O
Fﬁz_:_s_o_ ﬂI_n—-_Z_s_E— <SAF_ A_ —o_ " "I_-PAOA—I—«P“E T T " “ T T _m—z_s "<_m T T T ¥ T T O_WAO
T T T T q—_ _-qsaz_‘ _I_F_ZAS_E T T “ uz_Iﬁk_Z_sﬂz T T “ “ T T _m_z_s “<_m T T T T T T O_ﬂ_o
T T T T ¥ —u_¢a<_m_3. —C_Z_<4qc T T n " _u_w_m_<_J T T “ n T qn__‘o_o ;“U_E T T T T T T °~V-°
T T T T T —I__<_-F_Q_IF_ _s_m_u_m T T “ “ _E_D_o_o_< T T “ “ T _s_m_u_m “qdm T T T T T T °<m_°
T T T T T T T T T T T T T T ¥ T T T T T T T T T T T
_- _x_w O ZH _s_._.a ‘Q_E_Um " " T _Q_Q_oo _ _ “ " _ _S_E_N_N uq_m _ 4 i _ .. ‘ odm_o

T 1 T T T T T T T T T T T T T -r T " “ T ¥ T T T " " — m .F. I<Fm) t)
s ot mmwlm ‘ray 143 DNFIN ‘ray €2 - 4191 b€l 8L 9|s £
SINIWNOD p|B] wmo |* s S| wwwo |* seawaoy NOILVS3d0 38w INROD| 3NN

NYH3dO {8) NVY34O (V) -

Tz [1IN ofng

|s

< =

Lnl QO e .

2w ££

E o0 cc

R - 22 -
= 354 . £

y y z
o 10 o = [-
K A o
= = < ~ c [T o
[s] o (o] N o c
N S —E¥*= 9| |E 8 2 VN> 55£¢ =
[oD d-£ < o O n eMG
<] o X = %= Lpl £ O3 (e} — 0 > o
= oL c c £ 2 o = 5o =
n - - QO g O o £ = o X =3 e c o
5 cgl.s2| (285 -3 x g 8o 5% £
2 Fst? I g0 oS @ 2 §3- 2 =
o ASC - = T — o NO
co S~ R X5 £ S

Figure 6. Figure 4, modified to show the use of indexing.

22

55

COMMENTS

Page No.12, lof 2

CARD,

AjL A ST,

38] 39140

34

(B) OPERAND

ADDRESS
i
R

1

8.3[3[3.3

DClwi*, i,

1, 2,0]0 2IMON T HN[DCW* | | |

03
6Iol

|
1
1
1

L
1

(A} OPERAND

i

1

ADDRESS

16117

D|$, T ART,

OPERATION
D .C'w(*,

W[
chlw *I 1 1 1 1 :
pclwlooso . ||
EN,

H,
0.C

13]14

1
L
L
i

A

L
1

1

LABEL

LIAISITI

COUNT

| 4/ACC UM,
o,7,0|0 I|ZER @
0,8 0 0|| 01N|EI
0,9, 0|0 I|FTVE,
1,0,0]10 6[C I

1

4. 0|0 2|STITXTY,

4.0

6,0
1,5,010,3
1, 6,0

LINE

1
!

i 30l02MTHCTRDCIW®, . . 11 |

(,1,0]05lLARGE,

0,1,0
ol

-1
1,90
2,0,0

Figure 7. Continued

R

Index registers, which are also sometimes called B-boxes, or indexing
accumaulators, are available on most computers. In some machines there
are more than three, ten being a typical number. In some machines,
the contents of the index register are subtracted from the actual ad-
dress instead of added to it. In a number of computers there are spe-
cialized instructions that make indexing even more powerful. At least
one computer has an instruction that is a combination of a conditional
branch and a subtract, making it possible to write useful loops that
have only two repeated instructions.

Review Questions

1. Does indexing change the indexed instruction as it ap-
pears in storage?

2. Is indexing done in the processor or in the object pro-
gram?

3. It is possible to have both character adjustment and in-
dexing of a single address. Explain the effect of each,
and when each is done.

4. What are the advantages of indexing?

Exercises

*1. In the program of Figure 3, the variable address of the Add in-
struction could be used as a counter to determine when the loop has
been executed twelve times. Rewrite the program accordingly. (Hint:
Determine carefully what the loop testing constant should be.)

2. Modify the block diagram of Figure 4 and the program of Figure
5 to produce on the report the number of the month having the smallest
usage as well as the largest. Write with or without indexing.

3. Modify the block diagram of Figure 4 and the program of Figure
5 to print an X behind the month number if two or more months had a
usage larger than all others. Write with or without indexing.

*4. Draw a block diagram and write a program to do the following.
Read a card and move columns 1-20 to 0401-0420; read another card
and move columns 1-20 to 0421-0440; read another card and move
columns 1-20 to 0441-0460, etc. When columns 1-20 of 20 cards have
been moved to the new locations (the information from the last card
goes to 0781-0800), leave a blank line in your program for writing
the 400 characters in 0401-0800 onto magnetic tape. Then assemble
another block of 400 characters in 0401-0800 and indicate writing on
tape. Continue writing on tape until all cards have been read.

25

The number of cards in the deck is not necessarily a multiple of 20,
so a last-card test must be made after moving each group of 20 charac-
ters. When the last card is detected, indicate the writing on tape of the
last block, even though it is most likely not full.

Write with or without indexing.

5. Columns 21-22 of an invoice card contain a two-digit state num-
ber between 01 and 50. Write a program segment to find the four-
character alphabetic abbreviation corresponding to the number and
place the abbreviation in positions 0237-0240 in the print area. There
is a table in storage, as follows: .

State number - : Addpress of abbreviation
01 0785
02 0789 K
03 , 0793 [
04 0797
50 0981

A loop is not necessary.

26

