Principles of Programming

Section 5: Branching |

EM Personal Study Program

© 1961 by International Business Machines Corporation

Section 5: Branching

5.1 Fundamentals of Branching

In the last section we saw an example of a branching operation, in
connection with the last instructions of the two sample programs. These
instructions were set up so that after the line had been printed, the next
instruction executed was not the next one in storage, but the one speci-
fied by the address part of the Write instruction. This is the simplest
example of branching, which is the process of breaking out of the one-
after-the-other sequence of storage locations from which instructions
are normally executed in the 1401 (and in most machines).

The Write and Branch instruction is an example of an unconditional
branch: the next instruction is to be taken from the location specified
by the address of the branch instruction, regardless of any condition
in the machine. This can also be done as a separate operation, not com-
bined with input or output, by using the Branch instruction. The actual
and mnemonic operation codes are the same: B. The unconditional
Branch instruction has one address, which specifies the location of the
next instruction to be executed. This is called the I-address, or instruc-
tion address, to emphasize that it refers to an instruction, but it is

written in the same position as the A-address. .
Branch
FORMAT Mnemonic Op Code I-address
B B XXX
FUNCTION The next instruction is unconditionally taken from

the storage location specified by the I-address.
WORD MARKS Not affected.

TIMING T = .0115 (Ly + 1)ms.

The more powerful application of the branching idea is in the use of

- conditional branch instructions. With these, the next instruction is

taken from the specified address only if some condition in the machine
is present; otherwise, the next sequential instruction is executed. There
are several conditional branch instructions in the 1401. The simplest
of them is the Branch If Indicator On instruction. Here, the d-character

is used to specify what condition in the machine is to be tested, as shown
in the summary below. -

On a Branch If Indicator On instruction, if the d-character is a blank,
the instruction operates as an unconditional Branch. This means, in
effect, that if the last instruction of a program is a Branch, with blank
storage following, there is no need to put a word mark in the character
position immediately following the last instruction. (It is necessary
to do so otherwise.)

Branch If Indicator On ‘ !

FORMAT Mnemonic Op Code I-address d-character
B B . XXX X

FUNCTION The d-character specifies the indicator tested. If the
: indicator is on, the next instruction is taken from
the location specified by the I-address. If the indi-
cator is off, the next sequential instruction is taken.
The valid d-characters and the indicators they test

are as follows:

d-character : Branch On:
Unconditional

Carriage channel #9.
Carriage channel #12
“Last card” switch (sense switch A)
Sense switch B*

Sense switch C*

Sense switch D*

Sense switch E*

Sense switch F*

Sense switch G*

End of reel*t '

Tape transmission error® :

~~ERQEEHTOE R CE

is off ¥
! Punch error if I/0 check stop switch is
off +

P Printer busy (print storage feature) *
w4 Printer error if 1/0 check stop switch
is off ¥
/ Unequal compare (B =£ A)
R Printer carriage busy (print storage
feature) *
2

Reader error if 1/0 check stop switch

Equal compare (B = A)*

Low compare (B < A)*

High compare (B > A)* .
Overflow +

Processing check with process check
switch off ¢

|[NcH®»

*Special feature.
¢ TConditions tested are reset by a Branch If Indicator On

mstruction.

The indicators tested are not turned off by this
instruction except as noted by a $. When carriage
tape-channel 9 or 12 is sensed, the corresponding
indicator is turned on. These carriage channel-indi-
cators are turned off when any other carriage tape-
channel is sensed. The next Compare instruction
turns off the compare indicators.

WORD MARKS Not affected. .
TIMING T = 0115 (L + 1)ms. -

For an example of the use of a conditional Branch, consider the fol-

lowing simple example. We are required to read a deck of less than

a hundred cards, print certain items of the information on them, and
print the total of one of the fields when the last card has been read. Sup-
pose that the field assignments are as follows:

Card Field Printing Field
7-13 1.7
4-5 ‘ : 11-12
18-30 16.28
37-40 (Field s 30-35 sum on line
to be summed) below body of report

The first two printing fields are to be zero-suppressed—that is, any lead-
ing zeros are to be omitted in the printing.

This is not so different from examples we have seen before, there
being only two new features. The detection of the last card of the deck
can be done with a Branch If Indicator On instruction in which the
d-character is A, which designates the last card indicator. If sense
switch A is on and the last card in the hopper has been read, the branch
is taken. If sense switch A is on and cards remain in the hopper, the
next sequential instruction is taken. If sense switch A is off and the last
card has been read, the machine halts.

The suppression of leading zeros is a matter of ease of use of reports.
In most business reports, the meaning of a number like 0008904 is not
changed by printing it as 8904, and the report has a neater appearance

with the zeros omitted. This applies only to leading zeros; the number
should not be printed as 89 4. This suppression of leading zeros is easily
accomplished with the Move Characters and Suppress Zeros instruc-
tion, which has the actual operation code Z and the mnemonic MCS.
The instruction moves characters from the A-field to the B-field, stop-
ping upon detection of a word mark in the A-field. Word marks in the
B-field are not inspected, and are in fact erased. Any high-order zeros
are then replaced by blanks.

Move Characters and Suppress Zeros

FORMAT Mnemonic Op Code A-address B-address
MCS Z XXX XXX

FUNCTION The data in the A-field is moved to the B-field. After
the move, high-order zeros are replaced by blanks
in the B-field. The sign is removed from the units
position of the data field.

WORD MARKS The A-field word mark stops transmission of data.
B-field word marks encountered during the move
" operation are erased.

TIMING T = 0115 (L;y + 1 + 3L,)ms.

The symbolic program to do this job is shown in Figure 1. As usual,
we begin by clearing the read and print storage areas and setting word
marks in the read area. The Read a Card instruction is given a label
so that it will be possible to refer to it with a later instruction. The num-
bers for the first two printing fields are moved with a Move Characters
and Suppress Zeros instruction, and the third (which was not to be
zero-suppressed) is moved with a Load Characters to A Word Mark
instruction. Then the card field which is being summed is added into
a counter called TOTAL.

This much of the program sets up the printing line and forms the
sum, When the line has been printed, the next instruction asks whether
the card just read was the last; note the A in the d-character column
of the coding sheet. If this was the last card, we branch to the symbolic
location FINAL, where there are instructions to print the final total.
If this was not the last card, the next sequential instruction is executed,
which is also a Branch, but this time an unconditional one which takes
us back to read the next card.

80
88
“
'

‘
L
1
L

12

s

P

[T T
I WY
Lot 6

I S S O S S |

PR T W

1iof 2

COMMENTS
U SO T U W R S
PR G S N S|

"

,LCARD, T EST,

I S WD S SN W S S S S Y

Identification Lt

Page No.
LPRINT,
DA TA,
N SR

TR T B

I

CLEAR STWPRAGE 8

WRITE,

e

i

LAST,

ctEAR READ, ,
ACCUMULATE, ,
FINAL TOTAL ,

U ISRV YRR VR TR IO S S ¥ A 1 L i
AT S S S N

AND,
18, _PRINT,

S ET,

MO VE,
AREA , |
P
w4

A

38) 39|40

o

CHAR.
204,

0,3
A

:

34

(9} OPERAND
ADDRESS
P S '
P

Coding Sheet

R 4

Date

s

012

1
+

1401 Symbolic Programming System
(A) OPERAND
ADDRESS

-
ST,ART,

R.3
FLN

1617

AR 3, |

OPERATION;

McislR2, 1Y,
L.C

B,

[

Hl

LABEL
1314
P
L

L
L

"

START,
READ,
FINAL,

4

"
2

COUNT

LINE
sls
.
8,0
K

Program
Programmed by
0. 1,0
.
0,7,0
L
AL

Figure 1. SPS program illustrating the Branch instruction.

1"'|||!!'ppr ¥ W TR Y _T"""""'!Hf."“'““

COMMENTS

Page No.L_.2]of 2

4 4 - When the last card has been processed, the conditional Branch goes
1 4 1 to a Clear Storage instruction to erase the recently printed detail line.
The total is moved to the designated print position and the total printed.

The last instruction is a new one, called Halt and Branch. Nothing
was said in the problem specification about what should be done once
4 1 : the total is printed. We therefore assume that the machine should be
4 4 stopped, to wait for another problem to be loaded. The Halt and Branch
49 A f L instruction stops the execution of instructions until the start button on

171 the console is pressed, at which time the next instruction is taken from
171 the location specified by the I-address. In this case, the I-address was
1] ; made the address of the first instruction of the program. This was done
44 because of the possibility that when one deck of cards had been read,

{4 printed, and totaled, it might be desirable to do the same thing with

d

another deck. If this had not been thought necessary, the Halt instruc-

38]39{40

o
=

tion could have been written without an address, in which case pressing

CHAR.
ADJ.

*
34

(8} OPERAND

L

i

ADDRESS

the start button would have caused the next sequential instruction to be
executed. In our case the next “instruction” is not an instruction at all,
S - as it happens, but the total that has just been printed. What might
S R . happen when the control circuits try to carry out this number as an
4 4 A instruction depends, of course, on what the number is. At any rate, it
" is not a very desirable situation. It is probably a good practice to put
an address on all final halts, to avoid the possibility of this kind of con-
fusion. If there is really nothing more to be done at this point, the
I-address of the Halt can be the location of the Halt instruction itself,

0,0]o]o.0,

CHAR.
ADJ.

23

(A) OPERAND
ADDRESS
T S

0lol4lol

so that if the start button is pressed the machine will simply halt again.

B I Halt, Halt and Branch

11] FORMAT | Mnemonic Op Code I-address
{4 H ,
44 L H . XXX

I ‘ FUNCTION The execution of instructions is stopped and the
stop-key light on the console is turned on. Pressing

1617
D ¢c'wl¥
D.S,

OPERATION|

-4 e the start key causes the program to start at the next
1 7 1 k v : sequential instruction if no I-address is written, and

3|14

LABEL

to start with the instruction specified by the
I-address if one is written.

117 { WORD MARKS No effect.
144 TIMING T = 0115 (L; + 1)ms.

COUNT
7

LINE
L

1

0, 1,0 016 TIGITIAILI

t, 1,0

Figure 1. Continved

L
1,8,0
s

Review Questions

1. What is a conditional branch instruction?

2. Does the Move Characters and Suppress Zeros instruc-
tion remove all zeros from the field? Does its action de-
pend on a word mark in the B-field?

3. Is the last card switch changed by testing it with a
Branch If Indicator On instruction?

4. On a Halt and Branch instruction, when does the branch
occur?

5.2 Further Branching Operations

There are a number of other types of branching operations besides
those mentioned so far. After mentioning one of these briefly, we shall
consider the most important application of the concept: its use in com-
parison of data fields,

The next instruction to be considered is a rather special one that
tests a single character, called Branch If Word Mark and/or Zone. The
B-address specifies a character position to be tested. The I-address says
where to find the next instruction if the position satisfies the conditions
on the word mark and/or zone bits specified by the d-character. The
tests are described in the summary below.

This instruction, it may be seen, can test for all combinations of word
mark and zone bits. This feature, which is used frequently, saves a great
deal of trouble. We shall find several applications for it in later sections.

Branch If Word Mark and/or Zone

FORMAT Mnemonic Op Code I-address
BWZ Vv [XXX
B-address d-character
XXX x

FUNCTION The single character at the B-address is examined
for a particular bit configuration, as specified by
the d-character. If the bit configuration is present
as specified, the program branches to the I-address
for the next instruction:

d-character Condition
. -~ 1 Word mark
/SED
4{‘: -2 No zone (no-A, no-B-bit)
B 12-zone (AB-bits)
— K 11.zone (B, no-A-bit)
« S Zero-zone (A, no-B-bit)

8

3 Either a word mark, or no zone
C Either a word mark or 12-zone
L Either a word mark or 11-zone
. T Either a word mark or zero-zone
WORD MARKS As explained.
TIMING T = 0115 (L; + 2)ms.

The most useful application of branching is in combination with the
Compare instruction, which lets us compare two fields in storage. The
contents of the A and B fields are compared; if they are not the same,
the unequal indicator is turned on. A Branch If Indicator On instruc-
tion can then be used to test this indicator.

The status of the unequal indicator is not affected by testing it with
a Branch If Indicator On instruction. Therefore it may be tested several
times after being set once, if desired.

. - Compare
FORMAT Mnemonic ~ Op Code A-address B-address
C C XXX XXX

FUNCTION The data in the B-field is compared with an equal
number of characters in the A-field. The bit con-
figuration of each character in the two fields is com-
pared. The comparison turns on an indicator that
can be tested by a subsequent Branch If Indicator
On instruction. The indicator is reset by the next
compare instruction.

WORD MARKS The first word mark encountered stops the opera-
tion. If the A-field is longer than the B-field, extra
A-field positions at the left of the B-field word mark
are not compared. If the B-field is longer than the
A-field, an unequal-compare results.

TIMING =.0115(L; + 1 + 2Ly) ms.
Note: Both fields must have exactly the same bit con-
figurations, to be equal. For example, 000 compared

with 000 results in an unequal comparison,

As an optional special feature, the 1401 can be equipped with the
High-Low-Equal compare device, which considerably expands the
power of the Compare instruction. With this device installed, the com-
parison turns on a separate equal indicator if the two fields are equal,
and turns on either the high or low indicator as well as the unequal indi-
cator if they are not the same. “High” and “low” here refer to a scale

9

in which the characters of the machine are ranked from smallest to
largest. In this scale, the “smallest” character is a blank, the letters of
the alphabet run from A as smallest to Z as largest, and the digits follow
the alphabet. The various special characters fit in at the positions shown
in Section 12,

When it is necessary to determine which of two signed numerical
fields is algebraically larger, it is best to subtract one from the other
and use a Branch If Word Mark and/or Zone instruction to determine
the sign of the difference. The Compare instruction cannot be used if
the fields could have different signs, because it will treat the sign bits as
the zone bits of a letter. This is what we want in comparing two alpha-
betic fields, but not what we want for algebraic comparison.

For a practical illustration of the use of the Compare instruction, we
may write the program to perform the first summarization in the

- sequential file processing example of Section 1.3, with one simplifica-

tion. It may be recalled that in the example we read the merged master
and transaction deck, obtaining the unit price from the master and
using it to extend the price of each sale, and summarizing the total
sales for each product. This complete job is considered in Exercise 5.
Here we shall simplify the task by assuming that the input deck con-
sists only of the extended sales cards—that is, that we are required to
summarize the new sales deck. This deck contains a card for each sale,
showing the product number, district, salesman, number of units sold,
and the total price of the sale. The deck is in product number order.
We are required to produce a summary showing the total sales of each
product for the month.

A block diagram of the computer processing for this job is shown in
Figure 2. We begin with what are called here “housekeeping” opera-
tions. These are the preparatory instructions at the start of the pro-
gram, to clear storage and set word marks. After reading the first card,
the part number is moved to the print area and the sales price is moved
to a storage field where the total sales for the product will be accu-
mulated. Such a field is often called an accumulator. Now another
card is read and a comparison used to determine whether it has the
same part number. If so, its sales amount is added to the accumulator,
a check is made to determine whether this was the last card and, if not,
another card is read and the process repeated.

When it is found that a card has a different part number from the
previous one, the situation is this: the information from the new card
is in the read storage area, the part number of the previous group is in
the print area, and the sum of the sales amounts for the previous group
is in the SUM. It only remains to edit the total and print the line.

The two last card tests are necessary for the following reasons. It is
convenient to use the same editing and printing steps for the last group
of cards as are used for all others. This dictates a Branch to the same

10

Housekeeping

Read a Card

y
Part No. to
#{ print areq; $
to accumulator

Add $ to

accumulator

Same part

Edit total
$ and print
line

Halt

Figure 2. Block diagram of the computer operations in producing the sales summariza-
tion by product, in the example of Section 1.3.

11

steps—after which the computer, of course, has no way of “knowing”
that the steps were reached by a different path than normally, and
that something different should be done on completing them than is
normally done. This is the reason for the second test, after the output
box. It is important, in doing this, to know that testing the last card
indicator does not turn it off ; this is not true of some of the other indi-
cators.

This problem presents an excellent example of a principle that the
programmer must never forget: you have to plan for everything. What
would happen if the last card of the deck were the only card for a prod-
uct number? The comparison would show that the previous card was
the last of a group, the line for that group would be printed—and the
last card test would stop the program without ever processing the last
card! (This does not happen if the last card is part of a group of cards
having the same product number.) The simplest solution is to put a Lo
blank card at the end of the deck, which will take care of the special
situation without causing any trouble in the normal case.

(Although this is a simple solution, it is not a particularly desirable
situation for the computer operator. Exercise 8 considers a better solu-
tion.)

As a general rule, it is an excellent idea to check every block dia-
gram to be sure that such special situations as the first card, the last
card, and single-card groups are properly handled. And it is also an
excellent idea to be sure that test cases are designed to test such situa-
tions. It is most disconcerting to discover after four months of opera- é
tion that a program does not properly handle some special condition.

With the clear picture of the logic of the program that is provided
by a careful study of the block diagram, the program shown in Figure
3 presents no difficulties. The only instruction not previously illustrated ;
is the Compare, which is used here to determine whether the part num-
ber in the read area is the same as the part number in the print area.
After the comparison, a Branch If Indicator On instruction with a
d-character of slash is used to test the Unequal Compare indicator. If it
is on, the program branches to the edit and print instructions. The Halt
instruction is written with an I-address that is the same as its label, so
that if the start button is pressed after the program is completed, the
Halt will simply be repeated. This prevents an accidental attempt to
restart the program when there is nothing more to do. Following the
Halt and Branch, there is another Halt. This is provided merely to
make sure that there is a word mark in the position following the last :
instruction to be executed, since every instruction except an uncondi-
tional Branch must be followed by a word-marked character.

Vi B e e e ittt L

T,

i s a5

N qamt’

12

i
|

1
1Nl¢ T

i
1
I
I

NI¢ITI

ISJALMIEI
lQl
IIFI
Q.

C.ARD

lRlElAIDA

'

COMMENTS
NUMBER,
AMBUNT,
lI IFI

Page No.|_.!]of _2
ICIAIRIDI

IPIRI

IPIRIIINITI
AlclclUlMl
ILIAISITI

H@®USEKEEPTNG,
BAAICIKI

PIRlaLDIUICITl

sIAlLIE(sl

S,AME,
LAST,

A
A

1

00,5

(8) OPERAND

ADDRESS
R|D|¢|L|L‘
POOLL,
PlolglLJLA

lol3
1

(A) OPERAND

ADDRESS

PRINT,

1617
]
AR PN,
M C!W|RD @ L L,

OPERATION|

c.S

L.C

B,

cclaleoz,r, 1
MCIE|SUM , |

13]14

1
1

LABEL
slTlAlRlTl
MJ¢LVIEI
R1E1AID|
PRINT,

1
"
n
L

COUNT
L

LINE
0,1,0
0,2,0
0,4,0
0.5,0
0,8.0
0,7,0

8. 0
1,1,0
4.0
1,9, 0

N

Figure 3, SPS program to do the processing defined in the block diagram of Figure 2.

o !'ll “”/"‘ w’).l 7 ” !

85

Page No.|_.2]Jof 2
COMMENTS

Review Questions

114111 1. If a second Compare instruction were executed imme-
1171711711 diately after another Compare, what net effect would
the first Compare have on the Unequal Compare indi-
cator?

2. Suppose the instruction BWZ 0600 0800 1 is located in
4444441 800. What would it do?

1444944 1 3. In the program of this section, what happens to the in-
1111111 formation from the first card of a new group while the
line for the previous group is being printed?

5.3 Case Study: Parts Explosion and Summary

38| 39} 40

CHAR.
ADJ.

+
34

{B) OPERAND

ADDRESS

7 In a manufacturing operation, parts explosion and summary is the proc-
1177171711 ; ess of getting the total parts requirements from a prescribed production
schedule of finished goods. In the somewhat simplified example to be
considered in this case study, we are given a production schedule deck

(A) OPERAND

ADDRESS

0,00,4,
olol I 191
°l2IOl4I

L

1617

eND|s,TART, !

OPERATION
D,S
D,S
0,s!
0.C

1314

1
1
1
1
1

Il
1
i
i

LABEL
RIPINI
RIDI¢lL L
PPN,
P101¢1L1L|

1
1
1

COUNT

2,0

LINE
0,6, 0|0 9IED I T,

0,5,0/0,7|S, UM,

o,t,0

1111117 ‘”t containing one card for each model to be manufactured, each card
444444 4 ‘ showing the quantity of this product required. Each product has its
19114 1 A , own parts requirements, which are given in a parts requirements deck.
1117171711 g This deck contains, for each product the company makes, as many
1171171717 parts cards as there are different parts in the model. Each parts card

shows the product number, the part number and description, and the
N R (S Y quantity of this part required for the model. The basic task is to find
144944 - _ the total number of each part required by the entire production

===~ = = - schedule.

T The following listing shows in semischematic style the iriformation
T1T7177171711 for two hypothetical models from the catalog of a furniture manu-
1111 171 facturer:

1141441 Schedule card : model 5392 table ; 40 required
B I S T I Y Part card: 5392 table requires 1 top, part 278
Part card: 5392 table requires 4 legs, part 339

““““““ e e Part card: 5392 table requires 2 braces, part 447
1T 7T 7171717 oo Part card: 5392 table requires 12 screws, part 2285
S i e e O Schedule card: model 5673 table; 36 required
1 14]] . Part card: 5673 table requires 1 top, part 276
4444447 e Part card: 5673 table requires 4 legs, part 339
1444444 ‘ Part card: 5673 table requires 2 braces, part 447
111171113 Part card: 5673 table requires 1 front plate, part 663
11T T 17171 £ Part card: 5673 table requires 18 screws, part 2285

S
21 i B I A I I
. e ~ o ®| ol @
11114142

15

We see that the first model creates a need for:

40 tops, part 278

160 legs, part 339

80 braces, part 447

480 screws, part 2285
The second model creates the need for:

36 tops, part 276

144 legs, part 339

72 braces, part 447

36 front plates, part 663

648 screws, part 2285
The explosion portion of the application produces this type of informa-
tion, in our example in the form of one card for each type of part re-
quired by each model. The summary portion gets the total requirements
for each part. In this sample, the summary would show:

36 tops, part 276 :

40 tops, part 278

304 legs, part 339

152 braces, part 447

36 front plates, part 663

1128 screws, part 2285

This is the general idea of the job. Now we may consider in a little

more detail the implementation of the application in terms of the card
and report forms to be used here.

A flow chart of the processing is shown in Figure 4. The first step
in the job is to obtain the parts requirements of each model and mul-
tiply by the number of models to be built. In order to do this, the pro-
duction schedule is punched into cards having the following format:

Columns 1.5 Model number
Columns 6.9 Number of this model to be built

These cards are next sorted into model-number order, for collating
with the master parts requirements file. This file, which is in model
number order, consists of cards having the following format:

Columns 1.5 Model number

Columns 6-10 Part number

Columns 11-30 Part description

Columns 31-33 Number of this part required for
one of this model

This deck will contain, for each modhel, as many cards as there are
component parts in the model.

Parts requirements
file. In mod.

Production
Schedule

on model
number

no. order
A

masters
Masters

Unmatched

File or discard

1401
Explode parts >

Schedule
cards

requirements

File or discard

A

Exploded
parts requ.

on part
number

1401
Summarize
parts
requirements

p. parts

req. cards

Parts req.
summary

Figure 4. Flow chart of a procedure for parts explosion and summary.

17

Not every model in the catalog will be built in any one production
period, ordinarily, so when the parts requirements master file is col-
lated with the schedule cards, there will be unmatched masters. These
could be left in the deck, but it will simplify our block diagramming
and coding work here if we assume that they are selected out of the
deck and returned to the file. In fact, it might work out in practice that
the unmatched masters would make a much larger deck than the
matched, so that it would be entirely reasonable to remove the un-
needed ones to avoid wasting the computer time required to read them.

The deck that now goes to the computer consists of sets of what may
be called “packets,” each packet containing a schedule card giving the
number of a certain model to be built, followed by parts requirements
cards showing what parts are required to build one of the model and
how many of each. The task of the computer run is to “explode” the
parts needed for each model—that is, multiply the number of each
model to be built, by the quantity of each of the various parts which
are used to build it. This will produce another deck of cards, each card
giving the quantity of some part needed to build the specified number
of units of one model.

After these cards are sorted on part number, a second computer run
can easily summarize the number of each part needed by the various
models in which it is used.

The format of these cards is:

Columns 1.5 Model number

Columns 6-10 Part number .

Columns 11-30 Part description o

Columns 31-35 Quantity of this part required to
build the specified number of this
model

The format of the parts requirement summary is:
Positions 1.5 Part number
Positions 10-16 Quantity required

A block diagram of the computer processing to explode the parts
requirements of each model in the production schedule is shown in
Figure 5, and the symbolic program in Figure 6. The housekeeping
is much the same as before, except that now we clear the punch area
instead of the print area. The setting of word marks is done in absolute,
as a concession to the necessity of taking advantage of the similarity of
card formats in order to avoid setting word marks separately for each
of the two different types of cards that must be read.

18

. : ‘ stacker

Housekeeping

A

Read a Card
(Schedule)

Select

A

Store mod.
no. and
quantity

Read a Card
(Port req.)

Same model?

Yes

Get total
part req.

Punch explod.
part req cd

Yes Holt

Last card?

g Figure 5. Block diagram of the explosion part of the procedure charted in Figure 4.

19

The first card in the deck should be a schedule card. After reading
it, we use stacker selection to put this card in the 1 pocket, instead
of the normal read pocket in which the parts requirement cards will be
stacked. Stacker selection requires the Select Stacker instruction. The
actual operation code is K and the mnemonic SS. The instruction needs
only a d-character besides the operation code, to determine which of
the stackers is to be selected.

Next, the model number is placed in the punch storage area from
which it will be punched, and where it may be used to compare with
the model number from succeeding cards to determine when a new
model is to be processed. The model quantity is next moved to a working
storage location named QTY, for later use in multiplying by the number

. of each part required.
Now another card is read, which should be a parts requirement card

COMMENTS

Page No.l.l, [of 2

35
2

IA 1R|E lA

IRIEIQ
1clol

i

CARD,
CARD,

lplTl

S,CHED,
N0
lol

sITlAlclKlEARl
lCIAIRIDI

NEX T,

lslc IHI
P UNC,H

$,C HED,

P.RO0O,
|E IXIPI

CIA |R|DA

EISI—IPIALRITI

sIEII-IEchTII
PROOUCT NJMBER,

1

HAQIUISIEIKIE IEIP IIANIGJ

QUANT I TY,
QUANT TT Y,
NJQ|_’1R1E|A1°|

R.EAD,
slAlMlEl
SIEITIUIPI
T.6,T AL,
PIUIN 1C 1H1

Y

this time. (There obviously must be at least one part to each model.) As

/IN@ - NEW
AlLas T

later cards are read, however, we shall eventually come to the model

requirement card for the next model. Therefore, the first thing to do
now is to determine whether the model number on this card is the same
. as that on the previous card. If it is the same, we set up the information
for the total part requirement card, multiply the number of models
by the quantity of this part required for one model, and punch the
card. If the comparison showed a different model number, then the
previous model must have been completely processed, this must be a new
schedule card, and we go back to select the stacker and proceed with the

(8) OPERAND

1
i
L

0.4

1
1
Il

1

ADDRESS
PRODNGO
PRO®DNO
PARTNGO|

M‘Iull-lTl

o

processing of the new model.

27j20

After punching the card, a last-card test is used to determine whether

the end of the deck has been reached. If it has, we halt; if not, we return
' to read another card.

The summarization run is not hard to write, and is left as an exercise.

(A} OPERAND

Review Questions

1. It is rather essential to the procedure of the block dia-
gram that there not be two schedule cards for the same
model. What would happen if there were? Would it make o

OPERATION

1
1
1

CHAR.
ADJ.

i

23

1
i

ADDRESS
f

P,ARTCD

00,80,

16117

AR I,
WIR 2.
wiMu LT,

[
i
]
i
I
1
]
I
|
1
t
1

c:w QJTJYI 1 A

$.S,
L.C
MC
Ml
M.C
8,

any difference whether this happened at the front of the o
deck instead of the middle or the end? &
2. What would happen if there were a schedule card for :
which there were no corresponding parts requirements
cards? Would it make any difference where in the deck

LABEL

13]14

EX.P,S.UM|CS

1
i

1
F DO S

4

PARTCDIR,

SCHC D,
HAL.T,

this happened?

COUNT

B . » 3. This procedure contains no error checking of any kind.

i
i
!
1

Can you think of a way to use a total count of all parts
in all models to provide some measure of checking of
card handling?

LINE

? :

6,0

0,1,0
0,2,0
0,3,0
;

0,7,0
0,9, 0
1,1,0
2,0,0

[

Figure 6. Program of the computer operations diagrammed in Figure 5,

20

Excrcises

55

*1. Using the High-Low-Equal compare feature, move whichever
of the two fields DATA1 and DATA2 is larger, to location BIG. (Do
not write a complete program. That is, assume word marks are set and
that the symbols will be defined elsewhere.) Draw a block diagram and ’
write a program segment.

2. Move whichever of the three fields DATA1, DATA2 and DATA3
is largest, to location BIG. (Assume all the words are different.) Draw
a block diagram and write a program segment with same assumptions
as in Exercise 1. Hint: Place the larger of DATAL and DATA2 in
BIG, then compare this number with DATA3 and replace it with
DATAS3 if DATAS is larger.

*3. Read a card. If column 23 contains an 11-zone punch—regard-
less of what else the column contains—punch another card containing
in columns 1-40 the information in columns 41-80 of this card. If col-
umn 23 does not have an 11-zone punch, print in positions 1-40 the
information in columns 41-80. Write a program segment, in ahsolute
if desired.

4. In the block diagram and program of Section 5.2, add the steps
necessary to produce a sales total for the month, for all products.

5. Draw a block diagram and write a complete program to do the
extension and first summarization of the example in Section 1.3.

The format of the master cards is:

Columns 14 Product number
Columns 59 Unit price
Column 10 11-zone
The format of the sales cards is:
Columns 14 Product number
Columns 5-8 Units sold
Columns 9-11 Salesman
Columns 12-13 District
See Exercise 4 of Section 1 for a description of the processing and some
hints on how to proceed. ‘ :

*6. Suppose that cost information is included in the parts cards in
the case study of Section 5.3, as follows. Columns 34-38 contain the
total cost of as many of this part as are required to huild one of this

Page No.12, Jof 2
COMMENTS
'y 1
A i
[} 1
1)
1 A1
1 1
1 1
Il 1
1 1
i 1
F1 d
1 d
1 1
1 L.
N 1
1 1
i 1
i i
[l i

(B) OPERAND

ADDRESS

27]28

o
z

CHAR.

ADJ
L

1

1

1

1

4

1

L

1

L

L

1

¢
1
1
1
1
1
1
4
1
t
L
1
1
Il
i
£
i
1
]
L

|
]
]
!
]
]
|
]
|
|
|
|
|
|
|
|
1
|
!
i
t
|
|
|
|
|
|
i
|
|
|
|
!
!
]
]
i
|
|
|

|
!
|
|
1
|
I
]
|
t
1
!
1
|
I
1
!
]
'
|
|
!
1
)
i
t
|
f

(A) OPERAND

ADDRESS

|o|5|
l'lllol

0.1

16|17

|

]

]

i

1

Wlo.1.,3.5
D.C \W|¥,

END|JEX P, SUM

OPERATION

13114

1
L
L
1
1
1
A
1
1
1
1
L

model. Modify the block diagram and program as necessary to provide
a parts cost total for each model scheduled for production. This should
be printed during the explosion run, in the following format:
Position 1-5 Model number
Position 10-13 Number to be built
Position 18-25 Total cost of all parts required
to build this many of this model.
Print with decimal point.

@D NO®|IDS
PAR T N®|D S

1

1

L

i

L

L

1

i

i

D E S C,
0,9, 0|0 5|TO T QT Y|DC

LABEL
I|0|0 014 Q]T|Y|

1
1
1
1
1
1
£
i
1
1
L

R|2|

il
Rlsl
PR

i

I

i

1

1

L

1
:
1
1
i
1
1
|
1
L

08 MU L

COUNT
L
L
i
1
i
L
L
1

LINE
0,1 ,0

0,2 0
5
l7|°

0,8, 0

1,4+,0
1
i
1
Il
i
1
i1
{

-
.
1
0,6, 0

Figure 6, Continued

B

23

7. After the exploded parts requirements cards have been sorted
into part number order, they must be summarized by part number.
Draw a block diagram and write a complete program.

8. Extend the block diagram of Figure 2 to handle the special case
of a one-card “group” at the end of the deck, without the requirement
of a blank card at the end.

24

