Principles of Programming

Section 4: Symbolic Programming

EM Personal Study Program

© 1961 by International Business Machines Corporation

-

Section 4: Symbolic Programming

The simple examples of computer instructions that we have seen so far
have used actual machine addresses, which is the way the machine must
have them, However, very few programs are actually written this way.
Writing programs with actual (also called absolute) addresses leads
to problems in assigning data to storage locations, makes it difficult to
write cross references within a program, leads to difficulties when sev-
eral people must work on the same job, and leads to programs which
are very difficult to correct and to modify.

For these reasons most programming is done with a symbolic

' programming system. For the 1401 system there are three rather

similar symbolic programming systems available, called SPS-1, SPS-2,
and Autocoder. In this section we shall discuss the features of the use
of SPS-1; all of this material will also be applicable to SPS-2 and to
Autocoder, since these systems are extensions of SPS-1.

After establishing the fundamental ideas of symbolic programming
in this section, almost all later examples will be written in the SPS
language. This will allow the reader ample time to become thoroughly
familiar with symbolic programming, bearing in mind that almost no
absolute programming is done in applications.

4.1 Fundamentals of Symbolic Programming

The basic idea of symbolic programming is that symbols are written
in place of actual machine addresses. After the entire program has been
written in the symbolic language, the symbols are translated into abso-
lute addresses by a processor. The processor is itself a large program,
which can be run on the same machine as the eventual absolute lan-
guage program, The program as initially written in symbolic language
is called a source program; the processor program translates the source
program into an object program. The object program may then be run
to produce problem results.

It is worth emphasizing before proceeding further that (1) the
processor is itself a program, not a machine, and (2) the processor
only translates the source program into an object program—it does not
cause the object program to be executed.

We may begin to get a clearer idea of how symbolic programming
is used by considering an example. Figure 1 is a program written on a

Symbolic Programming System coding sheet. The purpose of this very
simple illustrative program is to read four cards, each of which con-
tains an amount in dollars and cents in columns 1-10. The program is
to form the sum of these four amounts, round the sum to the nearest
dollar, and print the total in dollars on the printer in print positions
1-9. This of course is vastly simpler than anything we would normally
do with a computer, but it will serve to illustrate the symbolic program-
ming principles that are our concern at the moment.

A glance at Figure 1 shows that all addresses are written as symbols,
with the exception of a few at the beginning. The symbols used in this
program happen to be either five or six characters. In general a symbol
may be from one to six letters and digits; the first character must be a
letter. The invention of symbols is completely under the control of the
programmer. It is often convenient to choose symbols that are descrip-
tive of the information referenced by them, such as using TOTAL to
stand for the address of the field in storage where a total is stored. On
the other hand, symbols are not required to have any such meaning,
and none is attached to them by the processor.

We see that it is possible to use absolute addresses where convenient.
The processor is easily able to distinguish between symbolic and abso-
lute addresses by the fact that the first character of a symbol is always
a letter, whereas the first character of an absolute address is always a
digit. We note that ahsolute addresses are written in four-digit form.
This is also true of addresses over 999, Using SPS we are not required
to figure out the three character form of addresses. If we want to write
the address 1231, we write it just that way rather than as S34. The
processor will convert the four-digit addresses to the three-character
form required inside the machine (and if an address like S34 were
used, it would be misinterpreted as a symbol).

In looking at the program in Figure 1 it will be noted that the opera-
tion codes are written in a new way. These are mnemonic operation

, codes. “Mnemonic” means “aiding the memory.” These substitute
operation codes are used hecause they are easier to remember than the
actual machine operation codes. CS is the mnemonic operation code
for Clear Storage; this is indeed easier to remember than /, and SW
is easier to remember than a comma. The mnemonic operation codes

for the instructions that have been discussed so far are shown in
Figure 2.

53

of
N
L
.
.
)
)
s
.
L

76

|
?

|
g
0
N
L
AREAS, &,
L
M
Lo
MR
Lt
L
PR
PV T
PETSR
o
TS
REPEAT |
TSI
Lo
PR
TS
PRI
JUS
PSR
P E
L1
11
PO 1

.
gl
o.NLY

X

A

.

X

L
i
i
i
L
s
A
L
n

COMMENTS
READ,
T

8

i
L
1
L
1
L
n
A
1
L
L

Page No.
Identification
CLEAR
ST ORAGE
FORM |,
TOT AL,
RAGIUINADI
MoV E S
PRINT,

L
"
s
.
L
1
2
i
L
L
L
"
1

L
i
i
1
a
—
1
L
1
i
1
"
‘
L
[L
L
s
1
L
L
s
1L
| 1
L

1
)
'
|
|
|
'
v
'
'
|
'
|
!
1
'
l
'
'
'
¢
'
'

]

|
'
¢
)
1

]
'
|

'
!
1
|
'
|
1
1
1
'
'
'
'
t
1
|
|
'
'
'
1
'
!
'
1
'
|
'
'
'
]
1
I
'
]
'

Coding Sheet
(81 OPERAND
ADDRESS

1 T 1 '

1

.

A

.

L
L
L
L
L
{
i
L

TIOITJAALI
TAQVTIAILA
PRIN

.

.

,

.

P
.
.

2

Date
o
x
27

CHAR.
ADJ.
0.2

L
)
5,0,

.

s

L

|

L

L

L

s

L

s

i
'
1
1
]
'
|
|
(
t
[
)
v
!
1
|
|
1
|
t
]
i)
t
s
]
|
|
!
1
'
|
!
'
!
|
¢
t
i
1
!
1
)
i
]
)
|
]
!
I
]

23

1
|
]
|
I
t
[
'
'
|
!
|
'
§
'
1
|
]
!
]
|
|
'
1
)
]
|
I
I

L
L
.
L
L
L
L

L 1

REPEAT

1
.

1401 Symbolic Programming System

{A) OPERAND

L
"
n
L
L
'

0
A

ADDRESS
L)

.

|A|D

T
0T

L

t

0,299

.
n
"

READI,

008
olonoxlx

16 (7

1

'

'S

wir E

wT

Wl

wix.
wlo 2. 09,
ols, T,AR T,

]
1
[
1
]
L
]
1
]
I
I
1
]
1
|
L
|
1
|
1
I
I
|
1
1
1
1
1
[}
n
|
i
[]
i
)

REPE ATIR,

1
n
L

OPERATION
n

c.s
s w
M C
R
A
R
Al
R
A
A
MC
D.C
0,C
DS
£,N
,

13)14

A
L
n
i
A
)
1
L
L
2

LABEL
T
i
.
.

L
L
L

"
L
i

L

1
i
L
1

s T AR
1TeT AL,
READ I,

be
[

COUNT

5
i
L
L
s
L
"
i
L
n
It

o
°

L
L

IBM
Program
Prog
LINE
L
L
7,0

L
L

. s,0]0.9/PRINT |DC

,,6,0/0,2|ROUND,

0,1
[]
6,3, 0
L4
0,5 0
K
L1
0,8 0
6,9,0
0.0
1,1,0
0
o
0
o
2,0,0

Figure 1. Example of a Symbolic Programming System (SPS} program. Four cards are read, after which the rounded sum of one field from each card is printed.

Instruction Actual Mnemonic
Move Characters to A or B Word Mark M MCW
Set Word Mark , SW
Clear Word Mark u{ cw
Read a Card 1 R
Punch a Card 4 P
Write a Line 2 w
Clear Storage / Cs
Add A A
Subtract S S

Figure 2. Mnemonic operation codes for the instructions so far considered.

It is still permissible to use the actual operation codes. If this is done,
the code should be written in column 16, whereas mnemonic operation
codes are always written starting in column 14,

We may now investigate the program shown in Figure 1 in detail.
We see that the first instruction has a label of START. This label be-
comes the symbolic address of the instruction. That is to say, when
this source program is translated by the processor, the symbol START
will always he associated with the location in storage to which the
processor assigns the operation code of the Clear Storage instruction.
Any instructions elsewhere in the program that must refer to this in-
struction may be written with the symbolic address START instead of
an absolute address. ,

The addresses of the three Clear Storage instructions are absolute.
This is done because these addresses could never change; no program
modification or correction could ever involve changing the read and
print storage areas. The address of the Set Word Mark instruction is
also absolute, on the theory that the field to be read from the card will
always start in column 1. We shall discuss later the consequences of
this assumption.

The Read a Card instruction presents no new concepts. The Move
Characters to A Word Mark moves the data field from its position in
the read storage area to the locations where the total will be accumu-
lated. The following six instructions read the other three cards and add
their data fields to the locations where the total is accumulated. The
next instruction adds a 50 to the total, Remembering that the data fields
were assumed to represent dollars-and-cents amounts, 50 added to the
least significant part of the total is, in effect, $0.50. This means that if
the cents amount is 49 or less, adding 50 will not change the dollar
amount. However, if the cents amount is 50 or over, adding 50 to it
will increase the dollar amount by 1. This is exactly what we want in
order to round the total to the nearest dollar.

""W

The next instruction moves the dollars portion of the total to a sec-
tion of the print storage area. Character adjustment is used on this
instruction. When this instruction is processed, 2 will be subtracted
from the address which is established as the equivalent of the symbol
TOTAL. This approach is necessary because we do not know what the
equivalent address will be—since the processor has not yet defined it.
If we did know the actual address corresponding to TOTAL, we could
write an address 2 less than that to get only the dollars portion. The
effect of the character adjustment is just what we need: the eventual
address will be 2 less than whatever address becomes the equivalent of
TOTAL.

The last instruction writes the contents of the print storage area on
the printer. We see here a variation of the Write a Line instruction: an
address is given in the A-operand field. We recall that the Write in-
struction always refers to the print storage area, so that no address is
required for the data. This is our first example of an instruction address
which refers to another instruction, this heing the Write and Branch
instruction. When the line has been written, the control section of the
machine will automatically take the next instruction from the location
specified by the address in this Write instruction. This is why the first
address of an instruction is referred to as the A/I address: it can refer
either to a data address or to an instruction address. The idea here is
that after the first group of four cards has been read and totaled, we
would like to return to the beginning of the program to read another
group. This process would he repeated indefinitely as long as cards
remained in the hopper. (We shall consider in the next section how a
test might be set up to detect the last card of the deck.)

The next four instructions are used to define symhols in the program
and in one case to define a constant that is referenced by a symbol.
They are not instructions to the computer, but to the processor; they
will not result in the creation of any instructions to bhe executed in the
object program.

DCW stands for Define Constant with a Word Mark. Taking the
first of these, we have an instruction to the processor to set up a con-
stant two characters long, as specified by the number in the count field,
columns 6-7. The constant is shown, starting in column 24, to be 50.
The asterisk in column 17 says to the processor that the constant may
be assigned to any convenient locations in storage. As we shall see
later, the constant in fact would be assigned to the two locations imme-
diately following the last instruction of the program. The symbol
ROUND will be associated with the low-order character position of this
two-character field. The DCW instruction that defines the symbol
TOTAL is slightly different. It is specified as eleven characters, which
is the number needed to hold the sum of four ten-digit numbers. How-
ever, nothing is written starting in column 24. This, in effect, defines

INSTRUCTION COMMENTS

LoC

B OPERAND

A OPERAND

opP

LABEL

PG LIN CT

TR T R T
'—
%] <
<t w
w >a
(@] o L i}
o = < Z o
w =z o0
of v W [(%]
o O ©
XxXaoaagazx w . (o] -
< <4 o0 =T < Wz
WLOOFFAadx QX — D> e
SZFFWLWLWICSZ OO0 [oXeN.4
O OUCW xEa
Lo - - — = O~
- — —_ -_—0
= = = & I N
OO N e o (=] [w] [=Ne e o3
QOO — Loy ~— — OO0
ONMO o o o oOgamMm
NNN emrSrgde—gdr~dadET N
M~ NoCOoOM~DWNOMIT—OWN
MM T FTNNNDOOMNNOOO
D N K It I M s Nt B M g)
[=jelojooloRololotololoNoNoXal
~—
- | -t "y
<L < < L Z
= = - ==
(@] o o OO
! [l b | ad -~ a
~N
o
o
1
[
- — - —QOJd<d
QO N—] o Q OZITWw
oM O < <t < Do
ONMO w w w woow
[of ool [+ 4 24 o X Lo
= =
L7 2% N7 I 4 (] (o]
LLULVNeETLCALLCLIAILER
'—
- <{
o w o
hat o .
- w
] [+ 4
= = A St E ol Ll A
[eloNololololoNolololaoloNe NNl
~ANMINOMDOO~NMIIN
OCOCOO0OO0OO0O0O0COOmrmemrmrer
T e -

ou0o0
ou11
0010
0209

50

*
*
0010
0209

DCW
DCW
DS

DCHW
END

2 ROUND
11 TOTAL
READ1
PRINT1

9

1 160
1 170

180
1 190

1

/ 333 080

START

Figure 3. Assembly listing of the program of Figure 1.

1 200

LR

the constant to consist of eleven blanks. The situation here is that we
need to specify the length of this field and to have the symbol TOTAL
established as being equivalent to the low-order character of the field,
but we do not actually need to enter a constant there. Here we are only
setting up a storage area with a word mark and defining the meaning
of the symbol associated with it.

The next instruction is a DS, for Define Symbol. It establishes 0010
as the absolute equivalent of the symbol READI, but without causing
anything to be loaded into storage with the object program. This is
necessary here because we are dealing with the read area, which is used
during object program loading; it is not permissible to use a DCW to
set a word mark in this area. The DS, combined with the Set Word
Mark instruction in the object program, accomplishes the same result,
but does not set the word mark until after the object program is loaded.
The DCW defining the symbol PRINT1 is acceptable, since the print
area is not used during loading.

The last “instruction” is again strictly an instruction only to the
processor. The END specifies to the processor that the end of the pro-
gram has been reached and that the processor may proceed to complete

.the production of the object program. We write in the A-operand
* address portion of the END instruction the address of the first instruc-

tion that should be executed when the object program is later executed.
The way this program has been written, the processor would put the
first character of the program in storage location 333. All succeeding
characters would be stored in sequential locations, in this example.
The translation of the source program into an object program, which
is also called assembly, may be outlined as follows. The source program
cards are punched from the coding exactly as shown in Figure 1, with
one card per line. The processor program must be in storage and will
have complete control of the computer during the assembly ; the source
program is not executed during assembly. The processor reads the
source program cards and translates the program into absolute form.

" The procedure varies somewhat depending on whether or not the

machine on which the assembly is done has tapes. On a card machine
there is an additional card-handling step during the assembly. In either
case the result of the assembly by the processor is a deck of cards con-
taining the object program. It is also possible to get a post listing or
assembly listing, which shows both the original source program and the
final absolute object program produced from it.

The assembly listing for the program in Figure 1 is shown in Figure
3. Note that the listing shows the instructions and data as originally
written in the source program, and also the assembled object program
input. The count field is seen to contain a value for all lines, including
instructions; the latter is provided by the processor for the program-
mer’s convenience. Notice that the addresses shown for the assembled

input are correct for both instructions and constants: high-order for
instructions and low-order for constants.

The program has not been executed yet! All that has been accom-
plished so far is to translate the symbolic source program into an abso-
lute object program and to produce a deck of cards containing the
object program. Now the object program may be loaded into the
machine and run. It is only at this point that the cards containing prob-
lem data are placed in the hopper and read. In short, it is only now that
the program that we have written is in control of the computer system.

Let us now consider what would be involved in making a change in
this program. Suppose that after the program has been written and
assembled, the problem specifications change so that it is necessary to
form the sum of the dollars-and-cents amounts on five cards and that
the fields are in columns 14-23 instead of 1-10.

To incorporate these changes in the program requires adding a
Read a Card and an Add instruction, and changing all of the addresses
that refer to the read storage area. If the program had been written
in absolute, it would mean inserting the two instructions at some ap-
propriate place, such as just before the rounding, and changing a
number of absolute addresses. The insertion of the two instructions
would require moving all instructions following the insertion, and the
changing of the addresses would require rewriting all those instructions
and repunching the instruction cards. Even in such an elementary pro-
gram as this, we see that a small change can result in program changes
requiring nearly as much work as the initial programming.

To change the symbolic program we start with the source program
deck. Since almost nothing in the source program commits us to spe-
_ cific locations in storage, changes in the source program are much
easier, The two instructions can be punched on cards and inserted at
the proper place in the source program. At this point we may note a
feature of line numbers that are preprinted on the form: they all end
in zero. This means that up to nine instructions can be inserted between
any two original instructions without destroying the sequence of line
numbers. For instance, if the Read a Card and the Add instructions
were to be inserted between lines 120 and 130, they could be given the
line numbers 121 and 122 without in any way disturbing the line
number sequence. This is valuable because by using a page number
(at the upper right of the form) and a line number, the sequence of
the source program cards can be defined as a protection against mis-
takes in handling of the source program deck. While on the general
subject we may note also that the program identification can be
punched in column 76-80 to provide an identification of the program
deck, further reducing the possibility of mixups.

With the program written in symbolic form, the change in the loca-
tion of the card field is almost completely solved by changing the
address of the DS instruction that defines the field. On line 180 it is

8

necessary only to change the 0010 to 0023, which will change the abso-
lute equivalent of the symbol when the program is reassembled. How-
ever, remember that 2 word mark was set in the high-order position of
this field, and that an absolute address was used. If this address is not
changed, the field will be incorrectly defined. This could be handled
by changing the address of the Set Word Mark instruction to 0014,
but a better procedure would have been to write the address in sym-
bolic, with character adjustment, so that the change in field position
will not create this particular problem.

Now when the program is reassembled, which is a simple matter,
all of the addresses in the program that are written as READ1 will be

- changed. As a matter of fact, we note further that the insertion of the

two new instructions changes the storage assignments of the ROUND
and TOTAL fields, so that the reassembly changes virtually every
address in the program. This is of no concern to us, since the processor
takes care of the whole matter in a few minutes, The new assembly
listing is shown in Figure 4.

It may seem a little strange to put so much emphasis on designing
programs so that modifications are easy to make. It might be thought
that once the program is written it can be forgotten. The actual fact
is, however, that virtually all programs change constantly in use, either
because improvements in the program are possible or because the prob-
lem specifications themselves change. It is not unusual for one pro-
grammer to be assigned the exclusive responsibility of making pro-
gram changes. The wise procedures designer and programmer give
considerable thought to ease of modification before the programming
is done. Symbolic programming, properly used, is of great value in
providing this simplicity of modification.

Review Questions

1. Which of the following are allowable SPS symbols?
CAT, K, F67YN, 674N, ABCDEF, H&89, GROSSPAY,
NET PAY, NETPAY,

2. Explain the relation between the source program and the
object program. When is the object program executed,
in relation to the assembly?

3. Could SPS be used to write a program with no mne-
monic operation codes and no symbolic addresses?

4. When character adjustment is used, do the symbolic ad-
dress and the character adjustment ever get into the
object program separately?

5. Absolute addresses are written on the SPS coding form
as four digits. Does this mean that they appear as four
digits in the object program?

9

INSTRUCTION COMMENTS

LocC

B OPERAND

oP A OPERAND

PG LIN CT LABEL

i

n -
<
s tw
w > o
2, % 24
o
wz [=X<]
ol — ut - (]
o€ OX +
xodag4x Wy | (o] -
< o [a¥a] = < ZW2Z
WOOax O X - D>
SHZFFWWgEZ200 OO0
(SRR B, N S IRE g Ty o x = a
o o o o ooo ‘
~— Laad — Land -~ —0
= = = = SN
ooNt M LA 0] M MO~
@ O~ M) ™~ o~ N o~ N NO r— 2t
ONMO o o o o o4 am
NNN e Fe~rgrdeg LN
Mh-r~NnNoOoOMRDVOMI—~NOCOMODOMO
MM I ITNDNNNOOMNNDODOrPOO—NO
MMMOMMOMOMMMIMNMNNMOMNNMOMNMMN T TON
COO0OO0OO00OO0OO0CO0ODOOOODO0OOOOCOO0O
o
Vel
-
S L s L B
< < << < o 4
L T el
o o o o [oNeN.4
Lol Ll Lad |t = a
o o~
(=] (=]
o o
[} [}
[
— — — —_ L o Y
oo NO o o o [a] OZ<¥W Mo
@ O~ M < < <L < < < D=0 N O
O NMW wt w w w WwWoow O N
QOO0 x -4 [4 24 [« 4 XX x x OO
= = - 4
[T MY I7) R 4 (&) &) uums
LLLMETFIAXAdAEAEILIITTOOOOD
[l -
[t < [Rl
[+ 4 w Za0Z
< o. Db
- w oCouwca
(%} o [-4 -8
- B . Ll Ol N e Ll Ll - S o
-
QOO0 QOOOO0O0OOO~NOOOOOOO
—NMNINONMNDOCO~NNNMINONMMDO
QOOOCOOQOOO ™ rmm e rmermrrr~ec
e = e P -

o
@©
(o]
N
N
2]
~

START
Figure 4. Assembly listing of a slightly modified version of the prefram of Figure 1.

END

o
o
~N
-

4.2 Further Information on the SPS Language
and Processor

DCW and END are only two of the “instructions” to the processor.
After considering some of the other symbolic instructions or pseudo
instructions, we shall consider in a little more detail how the processor
translates from a source program to an object program,

DCW automatically puts a word mark in a high-order character posi-
tion of the constant that is defined with it. The DC pseudo instruction,
which stands for Define Constant (no word mark), performs exactly
the same functions as DCW but does not enter a word mark. It is ordi-
narily used to define the value of a symbol and the length of a field, in
a situation where the word mark will be specified on the other field in
a two-address instruction.

Both DCW and DC create constants which are punched on cards in
the object program deck and are actually loaded into storage when the
object program is loaded. This is true even if the constant is all blanks.
The DS pseudo instruction, on the other hand, performs the functions
if defining the length of a field, reserving space in storage for this field,

si7and, if desired, associating a symbolic address with the field—but does

not enter a constant into storage with the object program. It can be
used when it is necessary to set up a storage location for intermediate
or final results when a word mark is not needed in the field. The DS
pseudo instruction can also be used for the sole purpose of defining the
absolute equivalent of a symbol, by not putting anything in the count
field. In the example of Section 4.1, for instance, a DS instruction
was used to specify to the processor that READ1 was to stand for 0010.
Situations will often arise where this is useful. '

Origin is a pseudo instruction which has the symbolic operation
code ORG. The only other field on such an instruction should be an
absolute address in the A-operand portion. The processor will interpret

 this as an order to place the next character of the program in the loca-
““ tion specified by the absolute address. This is most commonly used to
“#indicate where the first instruction of the program should be located.

“In the absence of such an ORG at the beginning of the program, the
first instruction is automatically placed in 333, which is the first loca-

“tion beyond the print area. It is also permissible, however, to have an
origin instruction someplace other than the beginning, or even to have
several of them. The latter might be useful, for instance, if it were de-
sired to place the constants and the working storage in a group sepa-
rated from the program.

A clearer understanding of the mechanics of the assembly process
will be useful in writing correct SPS programs and avoiding certain
types of errors. The operation of this processor program can best be
explained in terms of an example. Let’s see what the processor program

11

would do in assembling the program of Figure 1.

With the program punched on cards having the column assignments
shown on the coding sheet, the assembly can begin. The operation of
the processor in doing this assembly consists of two rather distinct
phases or passes. In the first pass the processor does little more than
establish the “meanings” of the symbols and translate the mnemonic
operation codes to actual. The processor does this by determining the
storage location to be associated with each symbol, as it reads the entire
program.

At the beginning of the program, the processor assumes that the first
character of the program will later be loaded into location 333 unless
it finds an origin card which specifies some other starting location. In
the program in Figure 1, therefore, the label START would be entered
into a label table, along with its absolute equivalent of 333. In order to
keep track of the amount of storage required by the instructions and
data in a program the processor must inspect each instruction or data
word to determine its length, The first instruction would be found to
require four characters (the operation code and one address). If there
were a label on the next instruction, therefore, it would be given the
absolute equivalent of 337. Proceeding in this manner, we see that sym-
bol REPEAT would be entered into the label table with the absolute
equivalent 349. The technique by which the processor keeps track of

. the location to which each symbol is equivalent, involves what is called
the location counter. This is a field within the processor program which
is started at 333 or whatever location is specified by the origin instruc-

-, tion, and is increased—as each card is read—by the number of char-
" acters needed to store the object program information created by that

card. Any time another origin card is detected, the location counter is
given the value specified on the origin card, without regard for previous
contents of the location counter. '
In our example, the location counter would start at 333 and be in-
creased by the length of each instruction, as all of the instructions are

" read. Finally it would reach the first constant at the end of the instruc-
tions; now, the location counter must be increased by the length of the
constant as given in the count field. Furthermore, constants and data
are addressed by their low-order characters rather than the high-order
by which instructions are addressed. Therefore, the label ROUND is
associated with the address 400, not 399. Proceeding similarly, TOTAL
would be entered in the label table as equivalent to 411. READ1 is made
equivalent to 0010 and PRINT1 is made equivalent to 0209, since the
actual addresses are specified in the source program. When the proces-

. sor detects the END card, it stops reading cards and prepares for the
second pass.

12

Notice that the processor has really not done much with the instruc-
tions so far. No symbolic addresses have been changed to absolute;
this would clearly be impossible. For instance, the processor could not
translate the symbolic address READI into an absolute address because
at the time it finds this address it has not yet established the absolute
equivalent of the symbol. This is the basic idea behind the two-pass
operation.

On the second pass the processor uses the information in the label
table to assemble absolute instructions as the source program cards are
read again. The information in the label field (columns 8-13) is not
used on the second pass; this information was needed only to define the
absolute equivalents of the symbols. This time, as the first card is read,
the four-digit address is converted to the three-character form. The as-
sembled instruction is then punched into a card along with information
to tell a subsequent loading program where in storage to put the instruc-
tion and its word mark. This process is carried out for each instruction,
as the cards are read. Whenever a symbolic address is found, the proces-
sor looks in the label table to find the absolute equivalent in order to
assemble the instruction. When an instruction is found which has char-
acter adjustment, the amount of the adjustment is added to or sub-
tracted from the absolute equivalent found in the label table.

The constants are recognized by their operation codes as being con-
stants rather than as being instructions and are assembled properly.
In our program the 50, which is referred to by the symbol ROUND
and the absolute address 400, would be punched on a card for loading
with the object program. The other DCW constants are all blanks; these
would also be put on cards for loading. For the purpose of our program
it would only be necessary that sufflicient information be punched on
the card for setting a word mark; however, there is no provision in the
SPS system for doing anything but literally loading the blanks. On the
second pass the END card in the source program would cause the crea-
tion of a transition card in the object program. This card would be the
last of the object deck and therefore would be read after the entire
program had been loaded. It later causes the object program to take
control of the computer system starting with the instruction specified
by the address in the END instruction.

It should be emphasized once again that the result of the assembly is
only the creation of an object deck. The object program is not executed
and it is not even left in storage ready to be executed. With the assem-
bly complete (and ordinarily with some checking for correctness), the
object program can then be loaded into storage and executed.

13

Review Questions

1. What is the difference between DCW and DC? Does
either of them allow a symbol to be defined without load-
ing anything into storage with the object program deck?
How can this be done?

2. Why must SPS use two passes in assembling a program?

3. Suppose the same origin were given before the instruc-
tions and before the constants. What would happen when
the object program is loaded?

4. What would happen if a symbol were used in the address
part of the instructions in the program, but never ap-
peared in the label column? Would the processor have
any way of establishing the absolute equivalent of the
symbol? &

5. What would happen if a symbol were written two places
in the label column? Would the processor have any way
of knowing which one establishes the definition of the

“i symbol? ’

RRRY R i L

4.3 Case Study

The following case study will give us another opportunity to see how
symbolic programming is used and at the same time introduce three
new instructions.

The problem is in a greatly simplified element of a payroll calcula-
tion. We are given an input deck which consists alternately of payroll
master cards and labor vouchers. The first card of the deck is a master,
the second is a detail for the same man, the third is a master for the
next man and the fourth is that man’s detail, etc. Master cards have the
pay number in columns 1-5, the name in columns 10-29 and the hourly
pay rate in columns 53-56. The pay rate is given in dollars per hour to
three decimals. A detail card has pay number in columns 1-5 and the
hours worked, to hundredths of an hour, in columns 10-13. Both cards
in practice would contain much other information. Our job is to read
the cards, compute the gross pay assuming no overtime, and print the
pay number, name and gross pay (to the nearest penny) on the printer.
This is to be done for each man in the deck, without consideration of
how to detect the last card (this problem is considered in the next
section) . The gross pay is to be printed with a dollar sign and a decimal
point and with any leading zeros suppressed.

The source program is shown in Figure 5, where separate pages have
been used for instructions and constants. This, incidentally, is a com-
mon way to write a symbolic program; often, the constants are entered
on the separate page as they are first used in the program.

14
—

“* TIMING T = 0115 (Ly + 1 -+ 2L,)ms.

The program begins in this case with an origin instruction, which
is used here primarily to illustrate the technique. It might be used in
practice to avoid some other standard routine in the first part of avail-
able storage. After that we clear the read and print storage areas and
set word marks, as before. Then we read the first card of the data deck,
which will be a master card. We move the information on it from the
read area to the print area and to a working area. This is done with a
new instruction called Load Characters to A Word Mark. This instruc-
tion is somewhat analogous to the Move instruction but with a sig-
nificant difference in the treatment of word marks. This instruction
requires that only the A-field have a word mark; it is this word mark
which stops the transmission of characters. Any word marks in the
B-field are cleared, then the word mark from the A-field is transferred
to the corresponding position in the B-field. This instruction can ob-
viously be used only if the field to which the data is being moved is the
same length as the source field; however, this is often the case and,
when it is, this instruction removes the necessity of setting a word mark

in the B-field.

load Characters to A Word Mark

FORMAT ~ . Mnemonic OpCode A-address B-address
’ ’ LCA L XXX XXX
! FUNCTION This instruction is commonly used to load data into

the printer or punch areas of storage, and also to
transfer data or instructions from the read-in area
to another storage area. The data and word mark
from the A-field are transferred to the B-field, and
all other word marks in the B-field are cleared.

WORD MARKS The A-field must have a defining word mark, be-

cause the A-field word mark stops the operation.

“ The third LCA instruction, written with character adjustment, moves

the hourly pay rate to the multiplier field. The next instruction reads
the detail card, obtaining the hours worked in the HOURS field, and
we are ready to multiply to get the gross pay.

Multiplication in the 1401 is a special feature which permits multi-
plication by built-in machine hardware. (In the absence of this special
feature, multiplication can be programmed.) On a Multiply instruc-
tion the A-address specifies the units position of the multiplicand ; this
field must have a word mark. The B-address of a Multiply instruction
addresses the units position of a rather special field which initially
contains the multiplier and in the end contains the product. The mul-
tiplier must be in the high-order positions of this special field before

15

panuiuo)) °g aunbiy

1 1 v 7 v t 1 1 1Ty 1TTd 1t T 3 T T 17 T 1t g 1 U T LI LN B T o'0'2
T T T T T 1T T T 1T 1 1 7T __”"__._. __""q____ "_ T T T T T T To'e 1
™7 Tt 1 v t tv..°r 1t ¥y T 171771 _-__"_____ -_v“"___- "4 T 17 T 1 71 -O_.a_
7T T 1 t 1 T 1t 1 T ¥ T __"”.d_._ qqnud__q. "~ T T T T O-F-.
T T T+ r vt T 1t 1. r°r & rFr T 177 __“"-___- __"“_4_._ "_ T T T T 1 T O_U-_
(I [1

+ T T 1 1 17171 7+ 1r 11 1T dq‘—_—__-< _-__—--_ | R T 1. 1T 1 T T o_'-
T T e T T T NTe3aQNa] T T T T T T et

N TR R I IR G B
T T ol T sl + T T #[mioTal T Ti'ra’3fz’ofeet)
T Ty T TTgl T T T T "¥[mo'al "a’N'neyfi'ofoTeTo] =
TR T 11 gp2ol ;sajg L’ NTHydl [oee
Ty T T 77 ogezo| ;sa[eTiNTHd| T foeTe
T T T H T T P "¢ 020 “m_o I"L'NTYd| [oTeTe
T T 7 €100 |sa] suanen [°F°

IR R T 1 '9's00o] sa[3TLTyTAvig] T JevTe
rTorrrrrrrrr RN " 11 '6zoo| is'a ~ INVN " [°oce
R T 11 T 's'0 00| ;sa] "@'NAvd] T [Tz
T T T T 71 0osofojue[T T T T T T eTiTe
® 1%z y q|+n ss3500V * M - nﬂu 53500V " " I)

SININNOD p|°] uvHo S| uvHo NOILYY3d0 RECL JULLE I TR
ONVY340 (8) NVH34O0 (V) _
2 #o72" 1'oN 9boq
- m« . .

*spJD WOl ppas 2Jps Apd PuD paysom sinoy woyy Aod ssoub juud pup aindwod o) woiboid g4 ¢ Sunbiy

Ll T T T T T T T L] T L] T T 1 T T T “ 1 T T T T T T T “ “ Ll T Ll 1 1 " T T T L T T T °.°—N
1
Fd<~u<a—w-x_ _S.FA —:-U_z_<~¢<m T T “ " T T T T T T T “ “ T _0_9-14& " _m T T T T T T O-.__
T T T T T T T T T T -.—v_z-H_mql T T]] T T ¥ T 1 T T] 1 T T T T T 1 1—; T T T T T T 0_._-
1 [l
T T L] T T T T T T T T T ¥ T T T T " m L T T T T N_o_onlm T q‘_-_l—_D_s mgqo T T T T T T O.h.-
1 T T T 1] -m_m_s~m—o- AF<H~°_w T T " "n_‘—-_z_qu_& m4°4°“|“ T _h'-ld-ﬁd_z u“o—s T T T T T T O-O.—
R T T T T L) i T T T T 1 T T T T T “ " T T T T T NAO_O“'“ T --F_l-_ﬁd.2 “;-w T T T T v T O-n._
L) T T T T L] T Al T L] T T \ T T T T] “n_.h-.de_m<& T T | " T q.—--H_o_w <"°_I— T T T T T T °<'<_
t)
L) _m.h_zqwqo. As-._-. qodz_:_e<m Nuo_onln T _F-l__:-z T T " “ _Q_ZAD_Q_I I"w -< T T T T T T O_m__
T T .>u<<&- _mum_S-mqw- _h'_m-o T T “ “ T _.—-_J_D.z T T “ " Am-m_a-o_x “ _z T L) L T T T O_N-_
T T T T T 4\ H T T -J-H.<_-F_w‘o T T “] T T T T T T T _ “ -,q T T T " _m T T T T T T Oq_-—
[} |
T T T T T T L] _m_h_<-m_ _>_<_& m_Od“'“ T _.—-_I—A_:.: T T n “w.h-ux.f.<<m <“0-J T T T T T T O_O__
T T T L] 1 T T T T T T _w_§_<_z T T " “N_F_Z_Hdm_a T T _ 1 T _uqz_<_z <-0_J T T L) T T T 0_0—0 m
1 [}
T T L] T T -m_w.maz_a-z- .>_<<a T T t _—.-—-_z_H_xq T T “ “ ~s~z_>_<ﬂ& <1"‘0-|_ T T 1 T T T O.._O
T T T T T T T T T _m_wj_‘.—--m_<_z T T " " T T T T T T T] [T T L} T T " _m T aw-s_m_& T O<h_°
[1t |
T ¥ T T T T T T T T T T T -=<; n<°_°"|" _m<m-=qQ_I n-o_onl“wgk_m_>«<-m ";_m T T T T T T O-Oqo
¥ T T T T T T T T L} T T -b-u<m m_——°“|n T <w_z_<~z v—°_°“ll" —S~z_>_<_l “;_w T T T T T L °—ﬂ~°
T T .mqq_m.m_q_ _u_°-<_x1eq._-<w T T " “ T T T T T T T " " T _N_m_m_o “m_o T T T T T T O_'.O
T M T T T L] ..—-_ZAH_mqﬁ_ <°_Z-< T T “ " T T T T T T T “ “ T _mdm_N_o “m_o T T T T T T O.n~°
T T T T T .o_<_m_mﬁ -m_<_m_l_.u T T “ n T T T T T T T n “ T qoqm_oqo J"‘w~o _z-H<0-w.m T O.N.O
T T T T T T T T T L] Li T T T T T T “ “ Y T T T T T " " T —O-o_w—o Gnm_s T T 7 T T T O—.<°
[13 orjes OIn Qv (3 ez|ie rov €2 M El (1 el ols [
. b §53¥00V z| . b+ $53400
SLNINNOD p S| wwmo [+ S| wwo |+ uaov NOILYN3d0 138v1 INNOD{ 3NN
ANVH3dO (8) ONVY3dO (V) _

T2 Jor7 10N 96og

the instruction is executed. The field must be one character position
longer than the sum of the number of digits in the multiplier and the
multiplicand. For instance, in our case we have four digits each;
therefore the field has been established as nine character positions
long. (This requirement is based on the way the machine multiplies.)

* Multiply
FORMAT Mnemonic Op Code A-address B-address
M @ XXX XXX

. FUNCTION The multiplicand (data located in the A-field) is

repetitively added to the data in the B-field. The
B-field contains the multiplier in the high-order po-
sitions, and enough additional positions to allow for
the development of the product. At the end of the
multiply operation, the units position of the product
is located at the B-address. The multiplier is de-
stroyed in the B-field as the product is developed.
Therefore, if the multiplier is needed for subsequent
~ operations, it must be retained in another storage
area.
Rule 1. The product is developed in the B-field. The
" length of the B-field is determined by adding 1 to
the sum of the number of digits in the multiplicand
and multiplier fields.

Example:
1246 4-digit multiplicand
X 543 3.digit multiplier

+1
" 8 positions must be allowed
in the B-field.

Rule 2. A word mark must be associated with the
high-order positions of both the multiplier and mul-
tiplicand fields.
Rule 3. A- and B-bits need not be present in the
units positions of the multiplier and multiplicand
fields. The absence of zone bits in these positions
indicates a positive sign. At the completion of the
multiply operation the B-field will have zone bits in
the units position of the product only. The multiply
operation uses algebraic sign control:

Multiplier Sign + o -

Mulitiplicand Sign + — + —

Sign of Product + — —_ +
18

Rule 4. Zone bits that appear in the multiplicand
field are undisturbed by the multiply operation.
Zone bits in the units position of the multiplicand
are interpreted for sign control.

WORD MARKS A word mark must be associated with the high-order
positions of the multiplier and multiplicand fields.

TIMING The average time required for a multiply operation
s is:

T = .0115 (L; + 3 +2L¢ + 5Lcly + 7Ly) ms.
L¢ = length of multiplicand field.
Ly = length of multiplier field.
Note: The first addition within the multiply opera-
tion inserts zeros in the product field from the stor-
age location specified by the B-address up to the
units position of the multiplier.

One of the numbers that are multiplied in this operation has three
places to the right of the decimal point, and the other has two to the
right. These decimal points are of course not punched on the card; they
are understood. To interpret the result we must decide where we under-
stand the decimal point of the product to be. This can be obtained by
applying the usual rule: the number of places to the right of the point
in the product is equal to the number of places to the right of the point
in the multiplier plus the number of places to the right in the multi-
plicand. This means that the eight-digit product will have five decimal
places. We want to round this product to the nearest cent, which re-
quires adding a 5 one position to the right of the pennies amount. This
turns out to be two characters to the left of the units position of the
field, so we add the 5 to the product field with a character adjustment
of -2.

The gross pay is now available in storage, rounded to the nearest
penny, Before printing it, however, we would like to insert a decimal
point between the dollars and cents, arrange to print a dollar sign, and
delete any zeros in front of the first significant digit. All of this can be
done with the Move Characters and Edit instruction. This instruction
requires the use of an edit word which contains the characters to be
inserted in the edited amount, along with (in our case) a character to
signal the use of zero suppression. The edit word is first loaded into the
print storage area. This edit word is $bb0.bb, where the b’s stand for
blanks, as shown in the constants in Figure 5. When the Move Char-
acters and Edit instruction is executed, the data from the A-field is
inserted into the character positions in the B-field occupied by blanks or
zeros, and high-order zeros are replaced with blanks.

19

A few examples will show what can be done with this powerful
instruction.

A-field B-field before B-field after
08828 $bb0.bb $188.28
08828 ' #$bbb.bb .$088.28

The zero in the edit word calls for zero suppression, and also defines

the rightmost character position to which it is to be applied, as this

example shows:

00067 $b0b.bb $bb0.67

Zero suppression applies to commas to the left of the first significant

digit:

000294368 b,bbb,bb0.bb bbbb2.943.68
This instruction performs certain other editing operations also, as

described in the summary box.

Move Characters and Edit

FORMAT Mnemonic Op Code A-address B-address
' MCE E XXX XXX

FUNCTION The Move Characters and Edit instruction modifies
the data in the A-field by the contents of the edit-
control word in the B-field, and stores the result in
the B-field.

Define the body of the edit-control word as the
part beginning with the rightmost blank or zero,
and continuing to the left until the A-field word
mark is sensed. The remaining portion is called the
status portion,

The following rules control the editing operation.
Rule 1. All numerical, alphabetic and special char-
acters can be used in the control word. However,
some of these have special meanings:

Control

Character Function

b (blank) This is replaced with the charac-
ter from the corresponding posi-
tion of the A-field.

0 (zero) This is used for zero suppression,

_and is replaced with a correspond-
ing character from the A-field.
Also the rightmost 0 in the control

20

word indicates the rightmost limit
of zero suppression.

. (period) This is undisturbed in the punc-
- tuated data field, in the position
where written.

, (comma) This is undisturbed in the punc-
tuated data field, in the position
where written, unless zero sup-
pression takes place, and no sig-
nificant numerical characters are
found to the left of the comma.

CR (credit) This is undisturbed in the status
portion if the data sign is nega-
tive. It is deleted if the data sign
is positive. Can be used in body of
control word without being sub-
ject to sign control.

— (minus) Handled in the same way as CR.

& (ampersand) This causes a space in the edited
field. Tt can be used in multiples.

* (asterisk) This can be used in singular or in
multiple, usually to indicate class
of total.

$ (dollar sign) This is undisturbed in the position
where it is written.

Rule 2. A word mark with the high-order position
of the B-field controls operation.

Rule 3. When the A-field word mark is sensed, the
remaining commas in the control field are set to
blanks.

Rule 4. The data field can contain fewer, but must
not contain more, positions than the number of
blanks and zeros in the body of the control word.

TIMING -~ T = .0115 (L; + 1 + L, + Ly + Ly)ms,

The A-field on a Move Characters and Edit instruction is required
not to have more characters than the number of zeros and blanks in
the edit word. Since the multiplication process always puts a zero in
the high-order character of the product, it is necessary to set a word
mark one position to the right of the high-order character in order
to satisfy this rule. After the editing has been performed the word mark
should be removed so that it will not disturb later operations with this
field, when the next card is read.

21

With the edited gross pay in the print storage area it is now possible
to write the line on the printer and branch back to PROG to read an-
other card and start over.

The constants are shown preceded by an origin instruction, which
once again is used mostly for illustrative purposes.

The definitions of the read and print area fields are all made with
DS instructions, since nothing can be accomplished with any of them
by loading word marks into storage. Word marks are not needed in the
print area, and it is not permissible to load constants into the read arca.

The DCW with the label ROUND is used to enter a 5 for rounding;
the EDIT DCW puts into storage the edit constant; and the MULT
DCW sets up the working storage location for the multiplier and the
product. These last three DCW instructions are shown with an asterisk
in the address field, to indicate that the processor may assign these
constants in sequence as the program is assembled. Notice on the assem-
bly listing in Figure 6 that the rounding constant is to be loaded into

. character position 800; the seven pseudo instructions between the

origin and this DCW had no effect on the location counter since they
specified absolute locations for the symbols. The END instruction, as
usual, specifies that no more source program cards follow, and the
address will cause the object program to begin executing instructions
at the address shown.

Notice that the comments which were written on the coding sheets
have been transferred to the assembly listing. They have no effect on
the assembly and are provided for the convenience of the programmer
and for others who may have to read the program. The use of com-
ments is strongly recommended.

Review Questions

1. What is the difference between the instructions Move
Characters to A or B Word Mark, and Load Characters
to A Word Mark?

2. Describe the operation of the Multiply instruction.

3. What characters in the control word (edit word) are
always replaced by characters from the A-field?

4. Discuss the reasons for using a combination of DS and
DCW pseudo instructions in this program. Could DCW
be used throughout? Could DS be used throughout?

5. How would the object program be changed if both ORG
instructions were omitted? Would the execution of the
object program give the same results?

22

1
|
|

(%]
(%) > =
< < Z
w o w
o « o Q
< < w v
» w =z @ W No
= o — Ul = - O
= o O xld I
w o <t WwZ oc—oo
= < o - [51] < Z
= WO WO>F>kD
o —S4ZFFWEIddgaIWWwo
O CauunxzaZooovc
z
o
— 00 MO~ VX
Q o0 NN ©0O©
2 OCONm—M N0V MO
- VMO oNwn —O
v oONMOO OO0 O®
E NNN & e— J @A
OFIONOCONMFT— OO
8} COO—~r—~aNamMmISt N
o VOVVOVOOVVOCO0O000
3 COO0OO0OO0O0oOOO0Co
o
o M wn N
o -0 o (=]
e oo o o
< (B 1 |
4 ~—A
W (R ol
o Wwe ZZk -
o =D — [
<O 0D jus R
© Z2TXr o0aoxE EX
=
[=] oo
2 (=N e
< S
(4 w w
Ly o © = wvo
a ocoooNZog ZwWwoe oZ
O OWOoM>> >Z> DD
VONMICaG aaa OO
« OO0OOO0Caa oZa I
(L) Qg <
a XVVVIZIE VUL
O oOoLVLVULUVVXJJ IXECAD
— =z ©
[1F] —
s 2 2
j o o
[
) S I~~~
Z O0O000O00O0OO0O0OOCO0O
_ NN INON~OOCOmNM
g 00000000 rm—r
1) e e e e
o

L 807 2u3

0663

PRINT3

EDIT

LCA

7
i

140

1

809
0674 E 813 2u3

0670

EDIT GROSS
BRANCH TO REPEAT

]

-003 PRINT3

-007
-007

MULT

MULT

SW
MCE

150
160 7

o 809

2

0681

MULT

CW
W

170 4
180

PRINT

0685
0686

1

B 626

PROG
0800

B

ORG

190 4
2 010

]
1
1
1
1

N
(4]

1
|

o
©
o
o
o
0
~
N OoMUNOMONMO
ONWN—OMIFIFOO
OOOONNNDOD
OCOO0OO0OO0OOQ0QOO
[Te]
L]
(=]
®
z 9
NnNoONMNOoOM — L
OoONWN e OM S (& o
COOONNN w i
OO0OO0O0OO0OO0O % % ¥ 5
E
g
zZET20 o
NNV VLLLOLZ s
[aNaNaYaYaRaNaNaNoFayil °
=
L ~ NN ‘e
(@} =N o
U ZZZ2ZH c
> > D e e) e £
AL IO XL X XOD D =
azZzoalooadw= >
£
E
~ N O 9
Y
| .
[oNoRaoRoNeNoNe Rolo}lo ol
ANMFTNONMNODOCO—N [
OCOCOO0OOOrmrmr— 5
Y
ANNANNNNNNNNN w

Exercises

*1. Give the absolute equivalent of each symbol in the program of
Figure 1 (before the corrections).

2. Give the absolute equivalent of each symbol in the program of
Figure 5.

#3. “Assemble” the program shown in Figure 7 “by hand.” That
is, carry out the same analysis of the symbolic program that the SPS
processor would do, ending with an absolute program.,

4. Assemble the program shown in Figure 8 by hand.

5. What is wrong with the following reasoning? It is desired to set
up a program to handle data cards on which the fields are of variable
position. To handle this, the absolute addresses of the field-defining DS
instructions will be given by additional numbers on the data cards.

6. Extend the program of the Case Study as follows. For each man,
there are three cards: the first and second are as before, and the third
gives the man’s deductions. The format of the deductions card is:

Columns 1-5 Pay number
6-8 Social Security
9-12 Withholding tax
13-16 Savings bonds
17-20 Union dues
The processing will now consist of computing the gross pay and the net
pay. For each man, a line should be printed, as follows:
Positions 1-5 Pay number
11-30 Name
36-41 Gross pay
47-50 Social Security
+-56-60 Withholding tax
66-70 Savings bonds
76-80 Union dues
86-91 Net pay
The six dollar amounts should be printed with decimal points but with-
out dollar signs.

e

24

55

COMMENTS

Page No.|__. !] of

40

39

CHAR.
ADJ.

34

{B) OPERAND

ADDRESS

27]28

=3

CHAR.
' ox 2

ADJ.

)
4

(A) OPERAND
M|

ADDRESS

s[t.o7T

16]17

OPERATION

M C

1314

1

LABEL

COUNT

LINE
7,0

0,1,0
1,1,0

4]

444 4 4
4 4 4 4 4
4 4 4 4 4
44 4 4 4
4 4 4 4 A
- A -4~ e
{45 1 1
11a0 11
o
4 4 o] |
L O' LAY
§ olw|
oo 1 7]
_— —— 7 b o—
ola| 1 o]
ol o] *| *| <]
2| 2|0
wlwlol ol Z]
o|o|o| ol uw]
1914 1
1914 1
14,44 1
0] —] S« | R
alaol~|x|]
| —
4 44 4 4
olo
=] (-] o
y y .— 0- O-
0 - S o

Figure 7. SPS program for exercise 3.

TR

R R . L

* 951249%9 10) woiboid gd¢ g 2.nbiyg

L T 1 T T T T T T T T T T T T Ll T []] T T T T T L Ll 1] t T T T T T T T T T T T T T O<°—N
L T T T T T T T T T T T T ¥ T T m m T T T ¥ T T T m m T T T T T _“ T T T T T T T O—Q..
L AL IS SN SR N SRR) RSN N SN RN SRR S SR T v r Tt T—T Tt T T T T T LA T 0 8 1
T T T T T L. T T T T T T T T T T " “ T T T T T T T " “ T L T T T " T T T T T T T °_F<_
LR T T T T T T T T T T T T T T T " " T T T T T T T " “ T T T T T " T T T T T 1 T 0_0—_
T T Al ¥ T T T T T T T T T T T T m m T T T T T T T m m T _w_m_w_I °mzqu T T T T T T O_ﬂ__
L] T T T T T T T T T T T T T T T T “ “1«\4o-°_ T [} T _”" “ T ¥ T T _*;“o-o T d.PqH-un o_— O-'J.
T T T T T T T T T T T T T T T T T “ " T T T T T T T “ “ T .m_—__Ao “w-o N-IAO—Z—D_& T O_n——
IR R T T T 60’1’0l jsTa[1THO'N'nd| T [eTe T
T T T T T T T T T T T T T T T T T " “ T T T T T L T “ “ T —m-N.-o_o "m_o _N_<_.P4<_° T O____
T T T T T T T T T T T T T " " T T T T T “ “ T <m_O<O.O "w_o __~<_.P<<_D T o o1 -
T T T T T T T T T T T T T T T T T “ " T T T T T T T “ " T _04<-w_m " ~m T T T T T T OquO N
) A S SR B SN SN S S S S EEN B H SR T W“ "N_I_O<ZAD_& T " “ _N_<_._._<_O w"OAE T T T T T T 2 e’ 0
¥ T T T T T T T T T T T T T T T T “ “N_Iao_z_qu T T " " T _IP_H_O_u <“o_l_ T T T T T T O_FJ‘O
T T T T T “_.I4o~z<3ﬂn. o Vol 1'v'lva <"o_._ T T foTeTo
T T T T T T T T T T T T T T T T T “ " T T T M T T T " “ T T T T Al “‘ 41 T ﬂQ.(ﬂN«I T O.O_O
IR 970701-] 2vival [p0o0-] Ivival ms[" T T[] JolrTo
T T T T T T T T T T T T T T T T “ " T T ¥ T d T T “ “ T _o_wA__o "m_o T T T T T T O.n.o
T T T T T T T T T T T T T T T T T “ " T T T ¥ T T T “ “ T _o_w~o_° "w_o T _u_m_uq T O—‘Na\o
T T T T T T T T T T T T T T T L T “ “ T T ¥ T T T T “ n T —OquNao o”m4s T T T T T T 014‘<°
[T] or|6€ wln rav (4 ez hlw oy €2 PARE:]] piler 8le 9s €
21 -uwwd e ? $$3800Y Z| wwHo by $S3¥00Qv
SININWOD P b NO!LVY3d0 J38v1 INNO3| 3NN
GNVY3dO (8) ONVY3dO (V)

T | o[1'oN abog

