3

Principles of Programming

Section 3: Coding Fundamentals

EM Personal Study Program

- ©1961 by International Business Machines Corporation

Section 3: Coding Fundamentals

In order to process data with a computer, it is necessary to provide the
machine with a program of instructions. A computer instruction is a
command to the machine, expressed in a coded combination of num-
bers and letters, to carry out some simple operation. Once the basic
data processing task has been completely defined, the job of coding is
to put together a suitable set of these elementary instructions to do the
defined task. When the set of instructions, which is called a program
or routine, is loaded into the internal storage of the computer, the
instructions can be executed by the machine and the desired data
processing thereby carried out.

In this section we shall learn what a few of the simpler instructions
are and how they operate. We must begin, however, by investigating
the characteristics of the internal storage of the computer.

3.1 Computer Storage and Its Addressing

The storage of a computer (also sometimes called the memory) is the
part of the machine where instructions must be placed before they can
be executed, and also where the data being processed by the instruc-
tions must be placed. By this definition we refer to interndl storage;
such things as magnetic tapes and magnetic disks are external storage.
Instructions can be executed only from internal storage, and the data
currently being processed must be put into internal storage before any
processing can be done on it. When data in external storage is to be
processed, it must first be read into internal storage by the execution |
of instructions.

We saw that in working with cards it was necessary to deal with
groups of columns, called fields. We saw that the interpretation of a
group of columns constituting a field was completely under the control
of the user of the equipment. Similarly, in working with the internal
storage of a computer we must work with groups of characters, which
are called words. A computer word may be defined as any collection of
characters that is treated as a unit. For instance, when the sales cards
of Section 1.3 and 1.4 are read into computer storage, such things as
the product number and the unit price are words. An instruction is also
considered to be a word.

In many computers, the number of characters in a word is fixed by
the design and construction of the machine. A typical size is ten char-

1

un P

{
e

9 (00101

(w

acters. Such machines are said to have fixed word length. Other com-
puters, including the 1BM 1401 and several others, permit words to be
of any length from one character up to (in principle) the size of the
storage. Such machines are said to have variable word length.

In any computer, whether of fixed or variable word length, it is
necessary to be able to identify every location in storage where a word
can be stored. For this purpose an address is assigned to every word
location in a fixed word length machine, and to every character loca-
tion in the variable word length case. The addresses start at zero and
run up to one less than the number of storage locations.

Note carefully that an address identifies a word location, not a word.
For example, the address 593 in the 1401 refers to a place where a
character may be stored; it does not by itself tell us what is stored there.
A location that contains the character A at one time may be used a
moment later to store the digit 7. We must always make a most careful
distinction between the address of a location, and the word or charac-
ter currently stored at the location identified by that address.

The internal storage of the 1401 is made up of magnetic cores, as
pointed out previously. The smallest model of the 1401 is able to store

’mcha‘ f instructi ta; larger versions are available
whic 0004 4,000,°8,000, 12,000 or 16,00 ‘gharacters. In this

book we assume a machine that can store 4,000 characters, Each of
the 4,000 positions is able to store any one of the 48 digits, letters or
special symbols; it is also possible to store 16 other symbols that have
various meanings within the computer. Thus, each of the 4,000 charac-
ter positions is able to hold any one of 64 different characters.

Each character position is composed of eight magnetic cores, each
core holding one bit. Six cores are required mms/(:]:aracter
itself, as discussed in Section 2.5. One core holds the parity bit, and
the eighth is used for the word mark bit. This last has the function of
defining the length of words within storage. Any character position in
which the word mark bit is one is thereby identified as being the high-
order (leftmost) position of a word. As we shall see, word mark bits
can be set (made one) or cleared (made zero) by the execution of
appropriate instructions.

When a data word is referenced by the computer, it is always by the
address of its low-order (rightmost) character position. The machine
is built so that addresses increase as the character positions are taken
from left to right, which means that the low-order character of a word
has the largest address. To summarize: When a character position is
addressed for data, the computer takes the character in that position
and all higher-order (but lower address) characters as comprising a

word, until it reaches a character with the word mark bit on. If the
character position that is addressed has its word mark bit on, the word
will consist of just that one character,

We shall see in Section 3.2, in connection with instructions, that all

2

» storage addresses are written as three 1401 characters. The first thou-

sand addresses are written simply as numbers between zero and ?99.
Addresses of 1000 and over are handled in a special manner to fit into
three characters, by the following scheme. The numerical 'part§ c?f the
three characters are always the hundreds, tens, and units digits of
the address. The zone bits of the high-order (hundreds) character are

. . 4 N r
regarded as the thousands digit, according to the following pattern: HUNOR UMy
1f the zone bits are _ ., Then the thousands B A (B A
B A zope PV digétis ,0-—6—- .
0 0 /’ - it
o 1 Y 1 0| [po
1 0 2 [0 0
1 1 1z 3 - bl g 0{
Thus, the binary coded form of thg address 12?&__@1/_%)
10010 /05\9'0’0%1& 00 0100 o1 |o
1 2 03 04 - ¢ 0o/

(Word mark and parity bits not shown.) The address 3789 would be] 0 ,
ded:

- 11 0111 00 1000 00 1001 oo () 0
. 37 08 09 ol 1o
Naturally, we do not want to have to show the binary‘ coded formof | o [o

such addresses; instead we write them as though t'he h.lgh-ofrder char(i L) [0

acter were the character represented by the combination of zone an 00

numerical bits. Looking at the table on page 4, we see that the address \]

1234 would be written S34, and 3789 would be written G8?. The com- {) / { ‘

plete pattern of three-character addresses is shown in F.lgure 1, for 10 X

addresses up to 3999. Larger addresses are handled by usmg.the zone

bits of the units digit in a similar system. | / B

Review Questions

1. What is the difference between internal and external

storage? . ‘)
2. Explain the following statement: instructions can b€
stored in external storage, but they cannot be executed

while in external storage.

|

0] 090}

3. What is the three-character form of the address 16437~ 00 1619

of 27007 . ,
4. The eight character positions 678-685 contain the char-

acters 93865274, where underlining a character
meansfhat_ that cRaracter position has a word mark. If
we address character position 684 for data, what word

will result? g6)
3

-—

00 O)ap
00 004

_

CODED ADDRESSES IN STORAGE

ACTUAL ADDRESSES

000 to 999
1000 to 1099
1100 to 1199
1200 to 1299
1300 to 1399
1400 to 1499
1500 to 1599
1600 to 1699
1700 to 1799
1800 to 1899
1900 to 1999
2000 to 2099
2100 to 2199
2200 to 2299
2300 to 2399
2400 to 2499
2500 to 2599
2600 to 2699
2700 to 2799
2800 to 2899
2900 to 2999
3000 to 3099
3100 to 3199
3200 to 3299
3300 to 3399
3400 to 3499
3500 to 3599
3600 to 3699
3700 to 3799
3800 to 3899
3900 to 3999

No zone bits

A-bit,

using O-zone

B-bit,
using 11-zone

A-B-bit,
using 12-zone

* Letter O followed by Zero Zero

.y, 3-CHARACTER

< U00 to U99

< D00 to D99

* ADDRESSES
000 to 999
(-1-00 to =99
/00 to /99
S00 to S99
T00 to T99

VOO0 to V99
W00 to W99
X00 to X99
YOO to Y99
\. Z00 to Z99
(100 t0 199
JOO to J99
KOO to K99
LOO to L99
MOO to M99
NOO to N99
*0O00 to 099
POO to P99
Q00 to Q99
. ROO to R99
(200 to 799
AQO to A99
BOO to B99
C00 to C99

E0O to E99
FOO to F99
GO0 to G99
HOO to H99
L 100 to 199

Figure 1, Core storage address codes.

3.2 Instructions

A computer instruction is an order to carry out some elementary

operation. Some instructions call for information to be read into in-

IV ternal storage from an input device such as a card reader, or to be

OUr” written out to an output device such as a line printer. Other instruc-

DATA T tions perform arithmetic. A third class moves and rearranges data

——— within the computer. A final group is used to make various kinds of
L 0gic decisions based on data or results.

All instructions have an operation code, which tells the machine
what operation to perform. In most computers, each instruction also
‘has a fixed number of address parts, which in most cases specify where
in storage to obtain data or place results. There may also be other
parts having special purposes in a particular machine.

In the 1401, every instruction has a one-character operation code—
which in a few cases is the entire instruction. Most instructions also
have one or two address parts, which are three characters, and some
have a one-character d-modifier which has a variety of functions de-
pending on what the instruction does. An instruction in the 1401 may
thus be from one to eight characters in length, making it a variable
instruction length computer.

The general form of a 1401 instruction is:

l’N STR :Operati'(m Code A-address B-address d-character
———— X XXX XXX X
Any parts that are not used on a particular instruction are simply omit-
ted. Some instructions, for instance, consist of only an operation code
and one address, or an operation code and a d-character. As with data
words, an instruction word is required to have a word mark in its high-
order position, which is always the operation code.

To see how these parts fit together, let us consider a typical instruc-
tion used to move a word from one part of storage to another. Such an
instruction might be: M 234 876. In this instryction, M is the opera-
tion code. It means Move Characters to A or B Word Mark. The 234
is called the A-address and 876 the B-address. (These addresses could
in general be any two addresses in storage.) The instruction means to
move the word starting at the A address, to the word starting at the B
address, with the length of the word moved being defined by the first
word mark to appear in either place.

Suppose for example that the following characters are in storage:

A-field B-field
36846582935 6549627957

[

234 876

ihtins €xample, the instruction means to move the word starting at 234
to the word starting at 876. The length of the word moved will be estab-
lished by encountering a word mark in either field in storage; the only
word mark in this case is in character position 871. The word moved
will thus be 582935. After the instruction has been executed, the stor-
age fields will be:
A-field
36846582935

23|4 876

There are several important things to notice about this example.
First, the storage positions from which the word was moved were not
affected. To be technical about it, the word is not really “moved” but
“copied and moved.” Second, the previous contents of the storage posi-
tions ¢0 which the word is moved are destroyed. As a completely gen-
eral principle, any time anything is placed in storage locations the pre-
vious conterts of the locations are erased. It is the programmer’s re-
sponsibility to be sure that the previous contents are no longer needed.
Third, the Move instruction does not change word marks. In fact, word
marks are not affected by most instructions; when word marks are to be
set or cleared, special instructions are used. Thus, when word marks
are set to define fields (words) in storage, the definitions stay in effect
until deliberately altered. .

For another example, suppose that the instruction and storage con-
tents are as follows:
Instruction

M 809 264

B-field
6549582935

A-field
NET PAY

B-field
TAX 6473852

809 264
Here the first word mark is encountered in the A-field. The result of
this instruction is:
A-field
NET PAY

B-field

TAX NET PAY
809 26'4

The space between NET and PAY is no accident. In showing the ex-
ample this way it is assumed that a blank space between NET and PAY
is desired. In order to obtain it, a character position must be set aside
for the purpose. The character “blank” is thus a character with the
same status as any other.

The essential information about the instruction Move Characters to
A or B Word Mark is summarized below. In order to make this sum-
mary a source of all the reference information about the instruc-
tion, it is necessary to list some things that will not be explained until

later.

IS

~h

e

S/

~ WORD MARKS

Move Characters to A or B Word Mark

Mnemonic ~ Op Code A-address B-address
MCW M XXX XXX

, The word in the A-field is moved to the B-field. The
data in the A-field is not changed; the previous data
in the B-field is lost.

The first word mark encountered in either field stops
the operation. If the first word mark is in the
A-field, the character at that position is moved; if
" the first word mark is in the B-field, that position
receives a character from the A-field. Word marks
are not disturbed in either field. If the fields are the
same length, only one of them need have a word
mark.

T = 00115 (L; + 1 + 2 L) ms.

FORMAT

FUNCTION

TIMING

We see that to move words within storage (and in fact to do almost
any data manipulation) it is necessary to have word marks set, This
naturally means that some way must be provided for setting and clear-
ing word marks within a program of instructions. This facility is pro-
vided by two instructions called Set Word Mark and Clear Word
Mark. These instructions may have either one or two addresses, allow-
ing us to deal with either one or two word marks at a time. The opera-
tion code “,” is recognized by the computer as meaning Set Word
Mark, so that the instruction '

, 200258
would mean to set the word mark bits of character positions 200 and
258. (Setting the word mark bit means making it a one and clearing
means making it a zero. It is convenient to use phrases like “the first
character with a word mark” instead of the more precise “the first
character in which the word mark bit is a one.”)

Set Word Mark

FORMAT Mnemonic ~ Op Code A-address B-address
SW , XXX XXX
or SW 5 XXX
FUNCTION The word mark is set in both locations specified, or
in the one location if only one address is written.
The character(s) at the location(s) are unchanged.
TIMING T = 0.0115 (L; + 3) ms.

W

The operation code for the Clear Word Mark instruction is & which
is called a lozenge. Like Set Word Mark, this instruction may have one
or two addresses. Its effect is to set to zero the word mark bit in the
character position or positions addressed.

Clear Word Mark

FORMAT Mnemonic Op Code A-address B-address
cw u XXX XXX

or CW px{ XXX |

FUNCTION The word mark is cleared in both locations speci-
fied, or in the one location if only one address is
written. The character(s) at the location(s) are
unchanged.

TIMING T = 0.0115 (L; + 3) ms.

For an example of the use of these instructions, suppose storage posi-
tions 600-608 contain the following characters:
AH84K7L56
o
Executing the pair of instructions ‘
o 608 604 ,602 &
would leave storage looking like
; AH84K7L56
Notice that setting and clearing word marks does not have any effect
on the character stored in a position.

The reading of a card is called for by executing the Read a Card
instruction, the operation code of which is 1. This instruction, which
need not have any address, causes a card to be read and the informa-
tion placed in storage in positions 1-80, which is called the read storage
area. The character in column 1 is placed in position 1, the character in
column 2 is placed in position 2, etc., which makes it quite easy to
work with the card information when it has been read into storage.
There is no way to read the card information into any other positions
than 1-80; as we shall see later, when an address is used on a Read a
Card instruction, it does not refer to data. Reading a card destroys any
previous contents of positions 1-80, except that word marks are not
affected.

Read a Card
FORMAT Mnemonic Op Code
R 1
FUNCTION A card feeds and the 80 columns of information are

read into storage locations 001 to 080.
8

A/

Liﬁmc

WORD MARKS Not disturhed.
TIMING T = 0.0115 (L; + 1)ms + I/O

The punching of a card is called for by the Punch a Card instruction,
which has the operation code 4. This instruction, which also need have
no address, causes whatever is in the punch storage area, positions
101-180, to be punched into a card. Punching a card does not affect
the contents of the punch storage area.

Punch a Card

FORMAT Mnemonic Op Code
P 4
FUNCTION The data in storage locations 101 through 180 is
punched into an 1BM card.
WORD MARKS Not disturbed.

T = .0115 (L; + 1)ms + 1/0

* The printing of a line of information on the printer is called for by
the Write a Line instruction, which has the operation code 2. The line
printed consists of the 100 characters in the print area, positions 201

300.

" ke

Write a Line

FORMAT Mnemonic Op Code

W 2

FUNCTION The data in storage locations 201-300 is transferred
to the printer. The printer takes one automatic space
after printing a line.

WORD MARKS Not affected.

TIMING T = 0115 (L; + 1)ms + 1/0

The 18M 1403 Printer can optionally be equipped with 132 printing
positions, in which case the print area consists of positions 201-332,

It is often necessary to clear an area of storage. For instance, sup-
pose that certain data and results are to be moved into the print area
and printed. The words moved into the area will ordinarily not occupy
every position, and we naturally want to erase the contents of the un-
used positions before printing, to eliminate the unwanted characters.
Furthermore, it is often necessary to clear word marks in an entire area
of storage; once again the print storage area is a good example. The
Clear Storage instruction makes it possible to clear as many as 100
positions with one instruction, putting the character blank in all, and

9

clearing all word marks. The operation code is / which is technically
called a virgule but is more commonly referred to as a slash or slant.
Since one of the functions of thistinstruction is to clear word marks,
it obviously cannot depend on the detection of a word mark to stop its
action. Instead, it is built to clear all positions from the one addressed
down to and including the nearest hundreds position. That is, if the in-
struction / 799 is executed, positions 799, 798, 797, . .., 701, 700 are
set to blank and word marks cleared. If the instruction / 801 is exe-
cuted, positions 801 and 800 would be cleared. The instruction / 400
would clear position 400 only. B

Clear Storage

FORMAT Mnemonic Op Code A-address
CS ' / XXX
FUNCTION Clearing starts at the A-address and continues left-

ward through the nearest hundreds position. The
area is set to blanks, and word marks are cleared.

WORD MARKS Word marks are not required to stop the operation.
TIMING T = .0115 (L; + 1 + L;)ms.

To illustrate the use of the instructions described so far, suppose
that we are required to read a card and print some of the information
on it in a readable format. The card format for the sales card of
Section 1.3 was:

Columns 1-4 Product number
5-8 Units sold
9-11 .- Salesman
12-13 District
Suppose that we are required to print this same information in the fol-
lowing positions: - :
Print positions 1-4 Product number
10-13 Units sold
19-21 Salesman
27-28 District
This spaces the numbers out, so that they can more easily be read.

As we start this operation, we do not know what is in the read and
print areas in storage—and even if we did know it probably would be
unwanted information and the word marks would likely be in the
wrong places. In the course of carrying out a complete program there
are ordinarily several different types of cards to be read and lines to
be printed, so that word marks must be set properly for each type
before trying to use the information from cards or trying to move in-

formation to the print area.

10

r

Sw

For these reasons we must begin the program by clearing the read
and print areas, which can be done with three Clear Storage instruc-
tions (we assume that the printer has the additional print positions) :

£ 080
Z 299
/ 332

As soon as a card has been read, it will be necessary to move the four
words from the read area to the print area, which will require word
marks to define the length of the fields. As far as we are concerned in

" this particular example, it would not matter whether the word marks

were set before or after reading the card. However, the normal situa-
tion would be to read and print many cards, all having the same format,
in which case we would repeat part of the program each time a card
is read and the line printed. When this is done, it is pointless to set the
word marks for every card; reading a card does not erase them. There-
fore, it is desirable to set the word marks before reading the card.

We recall that the Move Characters to A or B Word Mark instruc-
tion is stopped by a word mark in either the A- or the B-field, so
that it is not necessary to set word marks in both the read and print
areas. In this example it really doesn’t matter much which area has
them; we shall set the word marks in the read area. Remembering that
the word mark of a data word must be in the high-order position, we
need to set word marks in positions 1, 5, 9 and 12, This can be done
with the instructions:

, 001 005
S, 009 012

Now the card can be read, which requires only the operation code

- 1. With the data from the card in the read area, we can move the words

to the print area, which requires the following four instructions:
M 004 204
M 008 213
M 011 221
- : M 013 228
Recall that a Move instruction addresses the low-order position (but
largest address) and moves characters until it encounters a word mark
in the high-order position of either field, in this case the A-field.
The data in the print area can now be printed, which requires only

. the operation code 2. The program is thus as shown in Figure 2.

11

- M 14V FRUVOKAM CHAKT ORI A

Program:
Programmer: » Date:,
Step| Inst. Al/r;struc'icn R Effective No.
B Remarks of Characters
No.| Address plgr 7 L
d; | d, | Inst.| Data |Total|
Lo P
0 ie i ol | | CLEAR STORAGE POSITIONS 000 - 080
T T
2 lsis L " . . 200- 299
T T T
3isla| 1! ! . " 300-332
T I L T
|0jo;1]|o]o!5| |SET woRD MARKS POSITIONS 001, 5,
L T 1 T
,|ololsoli!l2 9,12
T T T T
1 ' READ A CARD INTO 001-080
7 T T
M[0,0!4/2!0!4]| |MOVE POSITIONS 1-4 TO 20i-204
LI T T
Mo!olsl2!1]3 " . 5-8 TO 210 -2I(3
T T T T
Moilil 2{2}: " " S-11 TO 219-221
1 T T
Molilz|2l2's " " 12-13 TO 227-228
T T T T
2| | Vol WRITE A LINE
T T

Figure 2. Program segment to clear storage, set word marks, read a card, and print
some of the information from the card.

~ Review Questions

1. What does the operation code of an instruction do?

2. In the example on page 5, suppose there had been a
word mark in position 870. Would the word moved have
been the same or different?

3. Suppose there had been a word mark in position 234.

W hat would have been moved ?

Can word marks be set or cleared with a Move instruc-

tion?

a

5. Suppose that storage contains the following characters:
A-field B-field
258DP7FGS5 HKLM8953V

604 709
W hat will be the contents of the storage positions if we
execute the three instructions
L 709
M 604 709
X 709
Starting with the original contents again, what would
result from:
M 602 704
6. Can you suggest why the computer was designed so that
the Clear Storage instruction clears to blanks rather than
zeros?

12

B

3.3 Storage of Instructions

We have so far spoken of instructions in terms of what they cause the
machine to do, and have not said anything about how the machine
deals with the instructions themselves.

The first and most important thing to realize is that the program of
instructions must be prepared before the processing is done, and that
the program must be in storage before it is executed. We write the
program, punch it on cards in a suitable format, load the instructions
into storage, and then the instructions control the machine without any
further action on our part.

This means, among other things, that when we write the program
we must anticipate everything that the machine will have to do. We
must know, for instance, the maximum sizes of the fields that the com-
puter will process, but we cannot know the actual numbers that will be
dealt with. The instructions must be set up to handle any data of the
general type that it is designed to handle. If something comes up that
we did not anticipate, the program will still do what the instructions
say to do, even though the results may be meaningless. The funda-
mental consideration is that by the time the instructions are executed
by the machine, we are no longer in the picture.

Another consequence of the storage of instructions is that they must
be capable of being stored in the same storage that is used for data,

_and they must be set up so that the machine can determine such things

as where one instruction ends and another begins, And, since it is fre-
quently necessary to repeat the execution of groups of instructions or
to skip around in the program, we must have some way to identify an
instruction by where it is located in storage. .

This brings us to a discussion of how instructions are stored within
the computer, which is one of the most important topics in the entire
study of programming. The crucial concept is that instructions are
brought to the control unit for execution from internal storage, where
they are stored in the same way data is stored. We may therefore talk
about where instructions are stored in much the same way as we talk
about where data is stored.

In the 1BM 1401, instructions are executed from consecutively higher-
numbered storage locations, unless special action is taken to break the
consecutive sequence. The operation code of every instruction must
have a word mark. Every character of each instruction is stored in a
character position; an instruction is identified by the address of the
operation code. Note that the operation code is the high-order charac-
ter of the instruction, so that the addressing of instruction words is
opposite to that of data words. Furthermore, instruction words are
picked up from storage from left to right, whereas data words are
picked up from right to left.

13

or an application of these ideas, consider the program thal was
developed in the previous section. This could be stored in any location
that does not conflict with the storage of data; it should be obvious
that since the program is stored just as data is, the program storage
must not overlap the data storage. A storage location can store cither
one character of an instruction or one character of data, but not both
at the same time, obviously. In this example, the only locations used
for data are the read and print areas; the program could in principle
be placed anywhere else. We will avoid the punch area, however, on
general principles: in most cases it will be needed for storing informa-
tion to be punched on cards, and we prefer not to get in the habit of
putting instructions where they could get in the way in some problems.

Let us make the arbitrary choice of storage location 700 for the first
character of the first instruction of this illustrative program. Then the
complete program in storage, viewed the same way we view data, would

be:

/080/299_{ 332,001005,0090121 M004204M008213M011221M0132282

/] I | I T

700 704 708 712 719 726 727 734 741 748 755

The underlining here represents word marks, as with data. The char-
acters with word marks are of course the operation codes. Simply by
counting character positions from the first location of the program, we
can determine the address of each character of the program. The most
important location for each instruction is the one that contains the
operation code, since it is by the address of the operation code that we
refer to an instruction.

[t would obviously be inconvenient to show instructions strung out
along a line this way, which was done to emphasize the similarity of
storage of data and instructions. The normal way to write instructions
is on a 1401 Program Chart, as shown in Figure 2. On this form, the
step number is used at the discretion of the programmer, for his con-
venience. It may be used to identify the instruction when it is punched
on a card; it does not enter the computer or have anything to do with
the computer’s operation. The instruction address is the address of the
storage location where the operation code is stored, OP stands for the
operation code. A/l is the address of the A data field, or, as we shall
see a little later, the address of the next instruction. B is the address of
the B data field—if there is one, of course. d is the d-character, which
we shall also consider later. The Remarks space may be used to explain
what the instruction does, for ease of understanding by other program-
mers, or as a reminder to the original programmer as to what the pro-
gram does. (It is surprising how unfamiliar one’s own work can seem
after six months.) The Effective Number of Characters space is used
to determine how much computer time will be used by the instruction;

14

we shall not be greatly concerned with this problem.

It is important to be clear on how much of this gets into the com-
puter: only the instruction itself. The instruction address is not part of
the instruction; it merely tells us where the instruction is located in
storage (or, rather, will be located, after the program is put into stor-
age). The other parts—the step number, the remarks, and the effective
number of characters—are strictly for the convenience of the pro-
grammer.

As we have seen, an instruction for the 1401 can vary in length,
whereas in most computers the length is fixed. It is necessary to fill
in only as many boxes on the form as are used on each instruction.

Review Questions

1. Does the fact that instructions are stored in a manner
very similar to the way data is stored, suggest that it
might be possible to do arithmetic on instructions?

2. For both data and instructions, the word mark is placed
in the high-order character. Are data and instructions
both addressed in the same way also?

3. Can you tell, without knowing anything about the pro-
gram organization, whether a given character belongs
with data or instructions?

4. What is the use of the instruction address column on the
coding sheet?

3.4 Arithmetic and Control Registers

The computer carries out its work of interpreting instructions and
processing data by use of several registers, a register being an elec-
tronic device that can hold one or more characters. Some registers are
involved in the transmission of information between internal storage
and other parts of the machine. Some are used to hold the parts of an
instruction while it is being executed. Others are used to hold the data
or results of arithmetic operations. :

There are six registers in the part of the 1401 that interprets instruc-
tions and operates on information in the internal storage of the ma-
chine, as shown in Figure 3. (There are a number of other registers
involved in transferring information between internal storage and
input or output devices, but we shall not be concerned with them.)

The most heavily used register of these is the B-register, which holds
one character, Every character leaving core storage enters the B-reg-
ister and is then directed elsewhere, depending on what is being done
at the moment. If the character is the first character of an instruction,

15

I register A register " B register

[TTT] L O

A-address ’ B-address
OP register register register

[] L] T

Figure 3. 1401 Processing Unit registers.

which is the operation code, it is sent to the OP-register, where the
machine inspects the character and uses it to determine what is to be
done by this instruction.

If the character from storage is part of the A/I address, it is sent to
the proper position of the A-address register, which is a three-character
register that will later determine (in most cases) the address of the
next data character to be obtained from storage. If the character enter-
ing the B-register is a part of the B-address, it is sent to the proper
position of the B-address register, also three characters, where it will
. later determine (in most cases) the next location to which to send a

character in storage.

The A-address and B-address registers are actually three-character
registers, corresponding to the three characters in a 1401 address.
but for convenience they are displayed on the console of the machine
-in four-character form. For this reason they are shown as four char-
acters in the diagram of Figure 3.

The d-character is not stored in a separate register.

We see that the A. and B-address registers are used primarily to
keep track of the addresses of data characters. The I-address register
performs the same function for instructions. This clearly is necessary;
since instructions are stored as data is, the machine must have some
way to keep track of where the next instruction character is to come
from.

The operation of the registers may be explained more fully in terms
of an example. Suppose that the instruction to be executed is:

M4107809

350
In order to execute the instruction, the I-address register must contain
350. The 350 would normally be there as the result of the execution of
the previous instruction—that is, the last character of the previous
" instruction was located in position 349, and we said that the register
always contains the address of the next instruction character to be
obtained from storage.

16

The machine operates in two phases: an instruction phase and an
exccute phase, or I-phase and E-phase. The I-phase is used to obtain
and interpret the instruction, and the E-phase is used to carry out the
instruction. When the I-phase begins, the machine uses the contents of
the l-register to determine from where in storage to obtain the first
character of the instruction, which is always the operation code. When
this character is obtained from core storage, it moves through the
B-register and into the OP-register. The machine “looks at” the opera-
tion code in the OP-register, with suitable electronic circuitry, and
determines what the function of this instruction will be. This also tells
the machine something about the function of the remaining characters
of the instruction as they are obtained.

As soon as the first character of the instruction has been obtained,
the contents of the I-register are increased by one, giving the address
of the next character of the instruction. This is then obtained; it goes
through the B-register to the A-address register. The I-register is again
increased by one, the next character obtained and placed in the
A-address register, etc. In our example of a Move instruction with two
addresses, this process would continue until both addresses had been
obtained and placed in the A- and B-address registers. At this point the
I-register would contain 357, the address of the next instruction char-
acter from storage, This character would also be obtained from storage
and placed in the B-register, but the machine would at this point detect
a word mark, since this character would be the operation code of the
next instruction, whatever it is. The word mark would signal the
machine that this instruction is complete, and would thus end the
I-phase.

No data has been moved yet! This much simply gets the instruction
from storage and prepares for the execution of the instruction, which
may now begin. The starting addresses of the two fields are in place in
the A-address register and the B-address register, and circuits in the
control section of the machine have been set up to carry out the Move
function as a result of interpreting the M in the OP-register as meaning
“move.”

The first step of the E-phase is to obtain the first character of the
A-field, the address of which is given by the contents of the A-address

- register. This character is brought from storage, placed in the B-reg-

ister, checked to see whether it has a word mark, moved to the
A-register, and placed back in storage at the location specified by the
contents of the B-address register. As the character is stored, the
machine is able to check whether the position at which it is being stored
has a word mark. This completes the movement of one character, The
contents of the A-address register and the B-address register are both
decreased by one, to prepare for dealing with the next character. If a
word mark was detected in either storage position, the instruction

17

execution is completed and we go back into the I-cycle to obtain and
interpret the next instruction ; if not, the next character is moved. This
process of getting one character, moving it to another location, and
checking both places for word marks to determine when the movement
is finished, is repeated until a word mark is finally detected.

For the purposes of things we sometimes want to do next, it is im-
portant to realize the status of the three address registers when the
instruction is finished. The I-address register contains the address of
the first character (the operation code) of the next instruction in
storage. We have seen that this character must have a word mark in
order for the control circuits to be able to recognize the end of the cur-
rent instruction. In most cases, the next instruction will be the next one
in sequence in storage, but we shall see several important exceptions.
The A-address register contains the address of the next character after
the last one transferred. Since the data characters are picked up from
storage from right to left, this address will be one less than the address
of the last character obtained. Stated another way, it is the address of
the next higher-order character after the last one moved. This will
often be the low-order character of another data word—a fact which
can sometimes be useful. The B-address register, similarly, contains
the address of the next character position after the last one into which
a character was moved. This will also often be the low-order character
of another word.

It is frequently possible to take advantage of the contents of the
registers after the completion of an instruction, using a technique
called chaining. Any time the B-address register already contains the
- desired address, it is permissible to omit the B-address of the next
instruction; if both address registers already contain the desired ad-
dresses, both addresses may be omitted. This saves storage space, obvi-
ously, and also saves the time that would have been spent in obtaining
the longer instruction from storage. This is a unique feature of the
1BM 1401 system.

For an example of how chaining can be used, suppose storage con-
tains the following: '

2345 98765 ABCDEFGHIJK
880 6|19 ‘ 739 743
Suppose that it is desired to move the field in 877-880 to 740-743, and
to move the field in 615-619 to 735-739. Note that the two fields are to
be placed in consecutive locations. If we first execute the instruction:

M 880 743
we will move one field as specified, leaving in storage:
2345 98765 ABCDEFG 2345
© 880 619 - 739 743
18

Now what are the contents of the A- and B-address registers? The
A-address register contains 876, the address of the character to the left
of the last one picked up from storage. This fact is of no value to us,
since that is not where the next field is to come from. The contents of
the B-address register are useful, however: 739 is just the address we
would have to write on the next Move instruction. We may therefore
omit it, and write:

M 619
The control section will recognize the word mark on the next jnstruc-
tion (whatever it is) as terminating this instruction without having
picked up a new B-address. Therefore the contents of the B-address
register will not be disturbed, and the previous contents will be used.
The effect is the same as if the instruction had been:

M 619 739
Lither way, the storage contents will now be:
2345 98765 AB987652345
880 619 739 743

This example involves a technique called partial chaining, which is
permissible with the Move and Load instruction only, since other in-
structions are treated differently by the control section.

For another example, suppose that storage contents were:

LMNOPQRSTUVWXYZ 112233445566778

395 400 495 500
The problem is to move 390-395 to 490.195, and 396-400 to 496-500.
Since the fields are consecutive in both places, we should be willing to
do it all in one instruction—but this cannot be done because the first
word mark will stop the movement, However, if we make the first
instruction:

M 400 500

* then the A- and B-address registers will both be properly set up to

move the second field, since they will contain 395 and 495 respectively.
The second instruction can consist of Just the operation code: M.

Chaining thus saves six instruction characters and a certain amount
of computer time. Properly used, it can be quite valuable. (But don’t
try to do things with chaining that can’t be done! It is not possible to
use chaining unless the following field is immediately to the left of the
previous one. Furthermore, it is not possible to omit the A-address and
write a B-address; the machine will always put the first address it finds
into the A-address register, and has no way of “knowing” that you
meant it to go into the B-address register. Therefore, if the A-address
register is properly set up, but the B-address register is not, chaining
is not applicable.)

19

Review Questions -

1. What is a register?

2. Which of the registers is involved in every transfer of
information out of storage?

3. What is the difference between an I-phase and an
E-phase?

4. What are the contents of the A-address register and the
B-address register after any movement of data?

5. How does the control section “know” that it has reached
the end of an instruction? (Bear in mind that an in-
struction can be from one to eight characters in length.)

6. Whatis chaining?

3.5 Addition and Subtraction

The basic idea of addition is that the number in the A-field is added to
the number in the B-field and the sum replaces the B-field. The B-field

must have a word mark, because it is this word mark that stops the
| instruction execution. The A-field is required to have a word mark only
if it is shorter than the B-field; in this case the A-field is added only
until its word mark is reached, but all carries in the B-ﬁelfi are com-
pleted. We may illustrate the addition operation with following storage
contents:

2847325 572994|9
608 473
The instruction
A 608 473
would give the resulting B-field:
5740274

The word mark in 606 signal-s—the end of the A-field, but all carries
in the B-field are completed.

If the instruction had been

A 608 470
" with the original storage contents, the result would be:
5764949 .

The word mark in 469 stops the operation, without a word mark having
been detected in the A-field.

Add
FORMAT Mnemonic Op Code A-address B-address
A A XXX | xxx
20

FUNCTION

WORD MARKS

The data in the A-field is added algebraically to the
data in the B-field. The result is stored in the B-field.

The B-field must have a defining word mark, be-

cause it is this word mark that stops the operation.

The A-field must have a word mark only if it is
shorter than the B-field. In this case, the transmis-
sion of data from A to B stops when the A-field word
mark is sensed. Carries within the B-field are com-
pleted.

If the A-field is longer than the B-field, the high-
order positions of the A-field that exceed the limits
imposed by the B-field word mark are not processed.

If the A- and B-fields have like signs, the result
has the sign of the B-field. If the signs are different,
the result has the sign of the one that is larger.

I the fields to be added contain zone bits in other
than the high-order position of the B-field and the
sign positions of both fields, only the digits are used
in a true-add operation. B-field zone bits are re-
moved except for the units and high-order positions
in a true-add operation. If the A. and B-fields have
unlike signs, a complement add takes place, and
zone bits are removed from all but the units position
of the B-field.

If an overflow occurs during a true-add operation,
a special overflow indicator is set, and the overflow

indications are stored over the high-order digit of
the B-field:

Condition Result

First overflow A-bit

Second overflow B-bit

Third overflow A- and B-bits

No A. or B-bits

For subsequent overflows repeat conditions 1-4.

The Branch If Indicator On (B xxx Z) instruc-
tion tests and turns off the overflow indicator and
branches to a special instruction or group of in-
structions if this condition occurs. There is only one
overflow indicator in the system. It is turned off by a
Branch If Indicator On instruction,

Fourth overflow

21

TIMING 1. If the operation does not require a recomplement
cycle:
T = .0115 (L; + 3 + Ly + Lg)ms.
2. If a recomplement cycle is taken:

T - .0115 (LI + 3 + L‘\ + 4LB)ms.

Subtraction, as might be expected, is very similar to addition. The
A word is subtracted from the B word; the difference replaces the B
word in storage. The word mark requirements are the same as with
addition: if the fields are of the same length, the A may have a word
mark but need not; if the A-field is shorter, both must have word
marks. (And in any case the A-field cannot be longer, because the
B-field word mark stops the operation.) ‘

Subtraction is algebraic, as is addition. The sign of the result de-
pends on the signs of the two fields and on which of them is larger, as
shown below.

“Subtract
FORMAT Mnemonic ~ Op Code A-address ~ B-address
S S XXX XXX

FUNCTION The A-field is subtracted algebraically from the
- B-field. The result is stored in the B-field.

A-field P + - —

sign '

B-field + - + —_

sign

Sign of + if B-ield — 4+ + if A-field

result value greater o ~ value greater
— if A-field — if B-field
value greater value greater

WORD MARKS A word mark is required to define the B-field. An
A-field requires a word mark only if it is shorter
than the B-field. In this case, the A-field word mark
stops transmission of data from At B.

TIMING 1. Subtract—no recomplement:

' T = .0115 (I;y + 3 + Ly + Lg)ms.

2. Subtract—recomplement cycle necessary:

T = 0115 (L; + 3 + Ly + 4Lg)ms.

22

Review Questions

1. On addition and subtraction, when must the A-field have
a word mark?

2. If the A-field is shorter than the B-field, why can the

execution of an Add instruction not stop when the end

of the A-field is reached ? .
3. What is the sign of the result when a large negative num-
ber is subtracted from a small negative number?

Exercises

*1. Given the following storage contents:

1234567 : 9876543
800 2(!0
Show the result of executing:
M 799 200
M 796 196
2. Given the following storage contents:

64378 12645
339 8!31

Show the result of executing A 339 881.

3. Given the storage contents:
64378 12645

339 8!31
Show the result of executing A 339 831.
*4. Given the storage contents:

5028 623438

497 5!)8
Show the result of executing S 497 508.
5. Given the storage contents:
621896 628324

500 ' 600
Show the result of executing S 500 600.

% .
6. erte a program segment to read a card and then punch another
card with the same information.

23

7. Write a program segment to read a card and print part ol the
information in it, as follows:

Card Columns Print in print positions
2-7 2-7
8-11 : 15-18
43 22
44-70 30-56
| *8, Write a program segment to read a card and print a line as
x follows: , I :
; Print positions Print *
-
F 1-8 Contents of card columns 1-8 t
20-22 Contents of card columns 10-12
30-35 Sum of contents of card columns

15-18, 19-22, and 23-26.

9. Shown below are a report form and a card form. Write a pro-
gram segment to read such a card and print the required information
as shown on the report.

Notice that leading zeros have been deleted in printing: where the
] - card might have 09285, the report shows 9285. This zero suppression
is obtained by using the Move Characters and Suppress Zeros instruc-
tion, which has the operation code Z. The A-field must have a word
mark; word marks in the B-field have no effect and in fact are erased.

ACCOUNTS RECEIVABLE REGISTER HADUN MFG. CO.
CUSTOMER LOCATION INVOICE INVOICE INVOICE
CUSTOMER NAME
NUMBER STATE cIry NUMBER DATE AMOUNT
9285 COVENTRY OIL 16 67 11509 11 8 53295
9285 COVENTRY OQIL 16 67 12292 12 23 95097
21217 CRESCENT BELT €O 36 471 11511 11 8 33563
21217 CRESCENT BELT CO 36 471 12263 12 17 12175
29031 DENNIS MFG CO 6 63 11615 11 14 44012
29131 DERNNIS MFG CO ‘6 63 11676 11 23 72222
29134 DEPQSIT DIST CO 25 39 3689 9 11 64540
29134 DEPOSIT DIST CO 25 39 11605 11 11 27169
29134 DEPOSIT DIST €O 25 39 12234 12 14 55933
Print Positions 7-11 16-37 44-45 49-51 56-60 64-65 68-69 74-80 .
| | I | I
Cusromer No. ‘ Invoice I Enn? Dnlq} l invoice Amouht 1 ACCOUNTS RECEIVABLE | Customer Nome 01
cvromss e ot rmekosm oot shausd o P e :

NO.

MO DA s1.lenmy. L mopav]
00D0800000000900000300(00[00/00000{5000 0/ 000 00 0[0 [0 000000

b 810 1012131415 907 90 1929202270 20 25 26 21 20 280 31132 2010 35 36 37 0|38 4041 42 42108 45106 47 |0 30 51152 {3 38 3017 u-nunu-hu--nqnnunnn n o
1|||l|11||||||||||llII‘III]llllll‘||1|||||||||||1llllllll‘“llllllllllllrl
ZlZ1211211222212212121Z22222211222211121122122211212122111ﬂ112221111221ﬁ1
33]3]331ill33IJ133131J3]3333J]31JJJ33333JJI311I3!!lJJ!JJJ!HI!JISﬁ!J]lIM!S
‘ll‘lll‘lll““ll44464Jllllllll‘lllllﬁlllll“44lll‘lllllllulllllﬂl“lllhl

| |
555555555555!555i5f5§55ﬂ555555ﬂ55

E555555555555556EE55586EﬁiEiiﬁSBGEEGEiiiﬁﬁﬁiiBﬁﬁﬁliiiﬁiiiipiiﬁ‘!hiliiiiﬁi

1117171177111111771111711117771177717777117711111117171711"1111%1777111h1

!IllIllllll&llllllllllllllll!Il!llllllIIBIlll]'lllllllllll%!lllllllllllﬂl
9

|
95(99/99/9/9/99999/99
Buy win erles o

L |

9999999(99(9999919989969/938{9999
%27 20 iz 3020w % 3 81w w4z 4 2

.
B |]

